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The analysis of physical measurements often copes with highly correlated noises and interruptions
caused by outliers, saturation events, or transmission losses. We assess the impact of missing data on the
performance of linear regression analysis involving the fit of modeled or measured time series. We show
that data gaps can significantly alter the precision of the regression parameter estimation in the presence of
colored noise, due to the frequency leakage of the noise power. We present a regression method that cancels
this effect and estimates the parameters of interest with a precision comparable to the complete data case,
even if the noise power spectral density (PSD) is not known a priori. The method is based on an
autoregressive fit of the noise, which allows us to build an approximate generalized least squares estimator
approaching the minimal variance bound. The method, which can be applied to any similar data processing,
is tested on simulated measurements of the MICROSCOPE space mission, whose goal is to test the weak
equivalence principle (WEP) with a precision of 10−15. In this particular context the signal of interest is the
WEP violation signal expected to be found around a well defined frequency. We test our method with
different gap patterns and noise of known PSD and find that the results agree with the mission
requirements, decreasing the uncertainty by a factor of 60 with respect to ordinary least squares methods.
We show that it also provides a test of significance to assess the uncertainty of the measurement.
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I. INTRODUCTION

Situations where series of measurements, ideally regu-
larly sampled, suffer from short interruptions are common
in a wide range of applications and experimental setups. It
is also usual to perform linear regression analysis of data
samples in order to estimate parameters of interest by fitting
other data series to the measured signals. In particular, this
is a typical scenario for space missions in fundamental
physics such as MICROSCOPE [1,2] and LISA Pathfinder
[3]. Long time integrations are needed by these experiments
to reach the required signal-to-noise ratios (SNR) or the
required levels of free fall at the frequencies of interest. The
duration of such measurements increases the probability
to have invalid data in the integration period. It has been
found that gaps could arise in the time series measured by
the accelerometers carried on board the MICROSCOPE
satellite, and that those gaps could have substantial impact
on the outcome of the regression when data are noisy.
Here “gaps” refers to either lack of data or unusable

information such as saturations and outliers during short or
long time spans, which are eventually discarded. In the case
of the MICROSCOPE space mission, discontinuities in the
data availability could be due to data losses in the telemetry
transmission, while data alteration could be the

consequence of three main identified causes: crackles in
the cold gas tanks triggered by decreasing pressure as they
empty, crackles in the multilayer insulation (MLI) coating
due to temperature variations in flight, or micrometeorite
impacts. All saturated data are clearly identified by a
flagging system in the telemetry.
The objective of theMICROSCOPE signal processing can

be regarded as rather general. It consists in detecting and
estimating the amplitude of a periodic signal present in some
measured time series. In the studied case the signal is the
signature of a possible violation of the weak equivalence
principle (WEP), as detailed later, and is expected to arise
arounda certain frequency thatwedenotefEP. The amplitude
to be estimated is the “EP parameter,” denoted δ. In previous
works [4] the data analysis had been optimized in order to
minimize the projection of possible unknown harmonic
perturbations onto the signal of interest by an appropriate
tuning of its frequency fEP and/or the integration duration, in
particular in the case of missing data. At the time, instru-
mental noise had been disregarded in order to exclusively
deal with projection effects. Here we rather focus on the
impact of missing data on the noise affecting the estimation.
While the proposed approach is applied to

MICROSCOPE simulated data, it leads to provide a robust
method to estimate one or several deterministic compo-
nents in the general context of time series with missing data
affected by unknown colored noise. Although we have
physical models of the expected noise spectrum, we assume
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in this study that it is not known a priori, allowing us to
cope with the most general situation.
We show that noise distortions due to missing data points

may dramatically increase the uncertainty of the estimation.
This is due to the convolution effect between the obser-
vation window and the original noise spectrum, which
leads to a leakage of the frequencies where the power is
high to the frequencies where the power is low.
Methods such as ordinary least squares (OLS) or

equivalently the Lomb-Scargle periodogram [5,6], as well
as CLEAN-like algorithms [7], may fail in retrieving the
required precision [8,9], mainly because these approaches
rely on a white noise assumption. To increase the precision
of the fit, the noise correlation matrix must also be
estimated. A general approach is to maximize the like-
lihood function with respect to both regression parameters
(δ in our problem) and the noise correlation matrix. Such an
approach can use the expectation-minimization (EM)
procedure like MAPES algorithms [10]. However, their
convergence may be very slow, especially for large data
samples as in the MICROSCOPE case (about 106 points).
More recent works also use least squares iterative adaptive
approaches (IAA) to estimate harmonic and noise param-
eters iteratively [11], but require one to store and invert
correlation matrices, which is computationally expensive
with an observation vector of 106 entries. Likewise, the
authors of the last two techniques do not present applica-
tions with colored noise. Some methods are already
implemented to extract unknown colored spectral densities,
especially in the domain of gravitational wave detection
(see, for example, [3,12,13]), but they do not tackle the
problem of gapped time series. A suitable method is thus
developed to estimate the EP parameter in the case of
missing data.
Another type of algorithms referred to as “inpainting”

techniques is based on a sparsity prior to filling the gaps
[14,15]. Their adaptation to general noise spectra is
currently studied in the MICROSCOPE team (Bergé et al.,
in preparation). We rather focus here on an approach that
avoids filling the gaps.
We develop amethodwith two successive objectives. The

first one is to reach the order of magnitude of the original
(i.e., complete data) uncertainty in the estimation of the
amplitudes of the deterministic components we are looking
for. The second objective is to theoretically quantify the
improvement on the variance of the estimator, using an
approach that does not require one to fill in the data gaps.
Our technique is based on the estimation of the noise

spectrum by using a high-order autoregressive (AR) model.
The result is used to weight the data through an orthogon-
alization of the covariance matrix. This leads to an
approximation of the best estimator in the sense of the
variance, also referred to as the best linear unbiased
estimator (BLUE) which is also the generalized least
squares (GLS) estimator in a linear regression context.

The main idea in the proposed approach is to separately
estimate the noise coefficients and the regression param-
eters instead of jointly estimating all the parameters. This is
done in an iterative procedure that avoids the use of
nonlinear optimization algorithms.
The proposed approach, that we dub “Kalman-ARModel

Analysis” or “KARMA” for short, is divided into three
steps. The first step consists in estimating theARparameters
describing the noise. This is done by using Burg’s algorithm
adapted to discontinuous data [16]. The second step is
carried out via a Kalman filter algorithm based on the AR
model that allows us to compute the weights, as shown by
Jones [17]. In the third step we finally compute an approxi-
mation of the GLS estimator of the regression parameters,
in a way similar to maximum likelihood computation
methods applied to regression models [18,19]. These steps
can be reproduced to converge to the maximum likelihood
estimator (MLE) of the parameters.
In this paper, we first analyze the effect of the missing

data pattern on the estimation uncertainty (Sec. II). We then
describe the KARMA method (Sec. III), and we present a
way of evaluating its performance, allowing us to give
criteria for the detection of the searched signal (Sec. IV).
Finally, after a brief description of the mission context, we
apply this technique to MICROSCOPE simulated time
series, in particular to data samples generated with the
mission and instrument simulator (Sec. V). In Sec. VI we
discuss the results.

II. IMPACT OF MISSING DATA

Although we apply our study to the MICROSCOPE data
analysis, it can be viewed as a general regression problem.
The measurement equation can be summarized as follows:

γ ¼ δsEP þ
X
i

αisp;i þ z; ð1Þ

where γ is the N-points complete measurement vector
defined as γ ¼ ð γ0 � � � γN−1 ÞT , and δ and sEP are, respec-
tively, the parameter and the signal of interest (the EP
parameter and the EP violation signal for our purpose).
The second term accounts for possible perturbations,

whose amplitudes αi should also be estimated to reject
any bias.
The third term is the residual noise vector z assumed to

be a zero-mean Gaussian random vector. The main objec-
tive is the estimation of δ, for which the square root of the
one-sided noise power spectral density (PSD) at EP
frequency must be 1.4 × 10−12 ms−2=

ffiffiffiffiffiffi
Hz

p
[1].

The presence of missing or corrupted data in the time
series is identified by a mask vector w that is equal to 1
when the data are available and 0 otherwise, regardless of
the nature of the gap. The observed signal is thus the vector
y with entries yn ¼ wnγn. We assume that the loss of data
arises before any possible filtering.
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A. Impact on the PSD

We briefly derive the impact of the observation window
w on the PSD of a pure stationary random signal. Thus in
this section we assume γ ¼ z. The real signal γ is regularly
sampled at a frequency fs so that γn ¼ γðn=fsÞ.
For a stationary discrete parameter process, the autoco-

variance function is defined as

RyðkÞ≡ E½ynynþk� − E½yn�E½ynþk�: ð2Þ

Then the PSD is the discrete-time Fourier transform
(DTFT) of the autocovariance [20],

SyðfÞ ¼
1

fs

Xþ∞

k¼−∞
RyðkÞe−2jπkf=fs : ð3Þ

In the case of the masked noise yn ¼ wnzn, Eq. (2) gives

RyðkÞ ¼ E½wnznwnþkznþk� − E½wnzn�E½wnþkznþk�:

We assume that the underlying process in z is independent
of the window w, and that w is a stationary process, so that
one can write

RyðkÞ ¼ E½znznþk�E½wnwnþk� − μ2zμ
2
w

¼ ðRzðkÞ þ μ2zÞðRwðkÞ þ μ2wÞ − μ2zμ
2
w; ð4Þ

where for any random variables x we note μx its
expectation.
Assuming that zn is a zero-mean process (μz ¼ 0), the

PSD of the windowed signal is obtained by taking the
discrete Fourier transform (DFT) of Eq. (4),

SyðfÞ ¼ μ2wSzðfÞ þ ½Sw � Sz�ðfÞ; ð5Þ

where � is the convolution operator.
The first term can be viewed as a loss of power due to

the missing data and the second term accounts for the
frequency leakage. In the case of uniform random gaps, one
shows (see Appendix A) that μw is equal to the probability
to have a gap at a given time. Then SwðfÞ is a constant, and
the leakage term is proportional to the mean power.
Therefore, the noise will increase significantly at frequen-
cies where the leakage term is dominant.
As an illustration, a simulation of the MICROSCOPE

instrumental noise alone is presented in Fig. 1. The noise is
generated using an approximate PSD model, taking into
account thermal sensitivities at lower frequencies, position
sensor noise at higher frequencies, random noise of the
pickup circuitry, and the frequency response of the control
loop,

2SzðfÞ ¼ σ2z

�
1þ

�
f
f1

�
−1

þ
�
f
f2

�
4
�
· jHclðfÞj2 ð6Þ

with σz ¼ 1.4 × 10−13 ms−2=
ffiffiffiffiffiffi
Hz

p
, f1 ¼ 8.1 × 10−2 Hz,

and f2 ¼ 1.3 × 10−2 Hz. Hcl is the transfer function of
the closed control loop of the accelerometer. It has almost a
unit gain for all frequencies under 1 Hz and induces a slight
inflection in higher frequencies. The factor of 2 accounts
for the fact that SzðfÞ is the two-sided PSD. The data are
sampled at a frequency fs ¼ 4 Hz on a duration T ¼ 1.4
days corresponding to 20 satellite orbits with Ng ¼ 5200

gaps of the same length (0.5 s), randomly distributed over
the time series. We observe a transfer of power from high
frequencies to low frequencies, increasing the apparent
noise around fEP ¼ 9.4 × 10−4 Hz by 2 orders of
magnitude.

B. Impact on the least squares estimate

We now demonstrate that the observed increase of the
noise is not a simple artifact of the Fourier representation
but directly impacts the estimation uncertainty in a least
squares fitting approach. We assume that the analyzed
signal is the sum of a harmonic component sEP at frequency
fEP and a correlated Gaussian random noise z. For the sake
of simplicity, we ignore the presence of possible deter-
ministic perturbations, and therefore the signals sp;i’s in
Eq. (1) are all zero. The signal is still sampled at frequency
fs on N data points. Thus the signal reads

γ ¼ δsEP þ z: ð7Þ

We define the window matrix as the diagonal matrix
formed by the window vector: W ¼ diagðw0 … wN−1 Þ.
We aim at calculating the variance of the OLS estimate that
uses only the available data (at times for which wn ¼ 1). In

FIG. 1. Periodogram of original (black) and incomplete (grey)
time series with 0.5 s data gaps randomly distributed in a 20 orbits
session. The simulation is done for 260 random gaps per orbit.
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the least squares formalism, this is equivalent to studying
the windowed vector y ¼ Wγ. We also define the model
matrix A. Although it can take a general form including
various signals, we assume here that it contains the EP
signal model only such that A ¼ sEP. We also define the
masked model matrix Aw ¼ WA. The usual OLS formulas
give the following parameter estimate:

δ̂ ¼ ðAw
†AwÞ−1 · Aw

†y; ð8Þ
as well as its variance

Varðδ̂Þ ¼ K−1Aw
†ΣyAwK−1; ð9Þ

where we defined K ¼ Aw
†Aw and Σy ¼ WΣzW† with

Σz ¼ E½zz†�, the covariance matrix of the noise vector.
Here † denotes the Hermitian adjoint. As a result, the noise
correlation seen by the estimator is Σy instead of Σz in the
complete case.
In the case of a stationary Gaussian random noise the

estimator covariance can be diagonalized in the Fourier
space,

Σy ¼
fs
N
M†DM; ð10Þ

where D is the diagonal matrix formed by the two-sided
discrete PSD: D ¼ diagð Ŝ0 … ŜN−1 ÞT and M is the DFT
matrix with coefficients: Mkl ¼ exp ð− 2iπkl

N Þ. The discrete
spectrum is defined as the expectation of the periodogram.
It can be seen as an approximation of the real PSD [20],

Ŝk ≡ 1

fs

XN−1

n¼−ðN−1Þ

�
1 −

jnj
N

�
RyðnÞe−2jπnkN : ð11Þ

This diagonalization thus links the estimator variance
and the PSD of the windowed noise. By developing Eq. (9)
we show (see Appendix B for more details) that in the case
of a harmonic model such as sEP;n ¼ γEP sinð2πnfEP=fsÞ,
for sufficiently large N, the estimator variance is approx-
imately equal to

Varðδ̂Þ ≈ 2fsNSyðfEPÞ
N2

oγ
2
EP

; ð12Þ

where Sy is given by Eq. (5), No ¼ N − Ng is the number
of observed data, and γEP is the amplitude of the model,
which is the gravitational acceleration in our case. As a
result, in the presence of missing data, the estimation
variance increases proportionally to the leakage term in
Eq. (5). To quantify the increase of the uncertainty, we plot
the standard deviation of the estimator as a function of the
number of data gaps per orbit in Fig. 2, in the case of short
random gaps of fixed length (0.5 s) uniformly distributed
over the time series (the effect of the size and the number of

gaps is discussed in Bergé et al., in preparation). The
theoretical standard deviation (black curve) is obtained
using Eq. (9). To check the correctness of the distribution,
we also plot the sample standard deviation of 400 estimates
(red curve) corresponding to different realizations of the
noise vector z. This shows that the uncertainty grows by 1
order of magnitude from 10 gaps per orbit only, which
represents a data loss of 0.04%. This is not acceptable with
respect to the performance objectives of the mission.
Therefore an alternative estimation method needs to be
implemented.

III. KALMAN-AR MODEL ANALYSIS (KARMA)

The poor performance of the OLS estimator is due to the
fact that its variance is not minimal. To minimize the
variance, the BLUE is needed, which takes the form of a
GLS estimator in linear regression problems. In the case of
missing data, it reads

β̂ ¼ ðAo
†Σo

−1AoÞ−1 · Ao
†Σo

−1yo; ð13Þ

where β is the q × 1 vector of parameters to be estimated.
The observation vector yo ≡ ð γn0 � � � γnNo−1

ÞT gathers the
available data only; that is, n0;…; nNo−1 are the time
indexes corresponding to the observed data. Similarly,
Ao is the model matrix where we have kept only rows
corresponding to observed data. Here Ao is assumed to be
general, of size N × q. Σo is the covariance matrix of the
observed noise vector zo and admits a Cholesky decom-
position such that Σo ¼ LoLo

† where Lo is a lower
triangular matrix.
The difficulty here is to estimate the noise covariance

matrix Σo in spite of the missing data. The method that we

FIG. 2 (color online). Theoretical (black) and sample (red)
standard deviations of the original least squares estimate of the EP
parameter as a function of the number of gaps per orbits. All gaps
have the same duration of 0.5 second and are randomly
distributed over a 20 orbits session.
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propose consists in calculating an approximation of the
GLS estimator by postulating an AR model for the noise.
This is done in three steps that are detailed below:
estimation of AR parameters (step 1), calculation of the
whitened vectors Lo

−1yo and Lo
−1Ao (step 2), and calcu-

lation of the estimate β̂ (step 3). The process may be iterated
if necessary.

A. Step 1: AR parameters estimation

The first step is to estimate the noise characteristics
encapsulated in the covariance matrix Σz. To do so, we
assume that the noise process can be described by an
autoregressive model of some order p to be determined,
verifying the following relation at all times n:

zn þ a1zn−1 þ � � � þ apzn−p ¼ ϵn; ð14Þ

where a1;…; ap are the AR coefficients and ϵ is a zero-
mean white Gaussian random field of variance σ2. Note that
this is equivalent to approximating the noise PSD with a
rational function, the numerator being a polynomial of
degree p in expð−2iπf=fsÞ such as

ŜzðfÞ ¼
σ2=fs

j1þ a1e−2iπf=fs þ � � � þ ape−2iπpf=fs j2
: ð15Þ

The choice of this model is motivated by the following
arguments. First, the use of a parametric model consistently
reduces the number of noise parameters to estimate
(p instead of N), and therefrom the computational cost.
Second, choosing an AR model rather than a more general
class such as autoregressive-moving average models
(ARMA) allows us to easily estimate the parameters from
the discontinuous data, while ARMA models usually
involve computationally expensive optimization proce-
dures, or direct estimation of the autocovariance function
that is not accurate when data are missing. Furthermore,
any moving-average model can be approximated by a high
order AR model as discussed by Durbin [21].
The AR parameters θ ¼ ðai; σ2Þ are estimated thanks to

Burg’s algorithm adapted to the missing data case [16].
This technique relies on the minimization of forward and
backward residuals of the model (14) through a recursive
procedure that increases the order k of the AR model at
each step, until k reaches p. This algorithm takes advantage
of all segments of available data. For a given order k, only
the segments of size Ns > k can be used for the estimation.
Note that the proper AR order must be previously deter-
mined according to some criteria such as Akaike’s [22], as
discussed later.
For the first iteration, the AR estimation is performed on

the residuals of the OLS estimation ẑo ¼ yo − Aoβ̂OLS
instead of yo, where β̂OLS is the result of the simple estimate
given by Eq. (8). This reduces the disturbance of

deterministic components onto the estimation of the noise
parameters.

B. Step 2: Computation of the weighted vectors
with the Kalman filter

The determination of the AR parameters gives access to
the noise autocovariance function. The aim of this step is to
use this result to calculate the weighted observation vector
L−1
o yo and weighted model matrix L−1

o Ao involved in the
expression of the estimator (13). The matrix Lo indirectly
depends on the AR parameters via the autocovariance
function, since

Σoðm;lÞ¼Rzðjnm−nljÞ ∀ ðm;lÞ∈ ⟦0;No−1⟧2; ð16Þ

where the autocovariance function Rz is estimated by
taking the inverse Fourier transform of Eq. (15).
Unlike the case of complete stationary random series,

the observed data in a missing pattern do not have a
circulant nor Toeplitz correlation matrix, because the ni’s
are not regularly arranged. Therefore the matrix Σo
cannot be inverted by efficient techniques such as
Levinson or fast fourier transform algorithms. If the data
sample is large (as in the MICROSCOPE case where
typically N ∼ 106), this creates memory difficulties to
store such a matrix. That is why we present a way of
avoiding the direct inversion using a Kalman algorithm to
compute the weighted data.
The relationship between GLS and Kalman filtering is

explained as follows. Following the notation of Gómez
and Maravall [19], an AR process can be described by the
state-space representation,

xðnÞ ¼ Fxðn − 1Þ þ GϵðnÞ; ð17Þ

zn ¼ HTxðnÞ: ð18Þ

The above equations are the state equation and the
observation equation of the Kalman filter. xðnÞ is the state
vector at time n, defined by

xðnÞ≡ ð zn znþ1jn � � � znþp−1jn ÞT;

where znþkjn is the conditional expectation of znþk given
the observations before time n. H is the matrix linking
the state vector to the observations, and simply reads
H ¼ ð 1 0 � � � 0 ÞT . The model matrix F and the
model noise vector G are calculated from the AR param-
eters and are defined in Appendix C.
The Kalman filter aims at calculating the a priori

estimate of the state vector along with its variance at each
time n given all the observations until time n − 1, that is,

znjn−1 ≡ E½znjz0; z1;…; zn−1�; ð19Þ

REGRESSION ANALYSIS WITH MISSING DATA AND … PHYSICAL REVIEW D 91, 062003 (2015)

062003-5



σ2njn−1 ≡ Var½znjz0; z1;…; zn−1�: ð20Þ

We define the normalized innovation vector e whose
elements are calculated with the Kalman residuals and their
standard errors,

en ≡ ðzn − znjn−1Þ=σnjn−1: ð21Þ

Since znjn−1 is actually the projection of zn onto the
subspace generated by ð z0 � � � zn−1 Þ, Eq. (21) is equivalent
to a Gram-Schmidt orthogonalization procedure. As a
result, the en’s are uncorrelated. In addition, znjn−1 is a
linear combination of zi, i < n, and thus the normalized
innovation vector can be expressed as

e ¼ Tz; ð22Þ

where T is a lower triangular matrix with diagonal elements
equal to 1. If we calculate the autocovariance of Eq. (22) we
find that

Cov½e� ¼ TΣzT† ⇒ Σz ¼ ðTT†Þ−1; ð23Þ

where the implication is based on the fact that Cov½e� is
equal to the identity matrix. This last equation shows that
the matrix T is equal or proportional to the inverse of the
Cholesky decomposition L−1 of the covariance matrix Σz.
However, in our problem this is not exactly true. The
derived equalities are valid only if the random data truly
follow the AR process, which is not the case in our
approach since the AR model is just an approximation
of the real underlying random process. We thus assume that
the Kalman output e is only approximately equal to L−1z.
If data are missing, the classic Kalman procedure must

be slightly modified to properly deal with missing data, as
explained by Jones [17], but the components of the
normalized innovation vector e corresponding to missing
data are ignored in the estimation at step 3.

C. Step 3: Computation of the GLS estimate

In the previous paragraph we showed how to perform a
quasiorthogonalization of the observation vector, which is
exactly what is needed to compute an approximate version
of the GLS estimate.
The estimator in Eq. (13) can be rewritten,

β̂ ¼ ðEo
†EoÞ−1 · Eo

†eo; ð24Þ

where, with obvious notation, we denote the normalized
innovation vectors eo ¼ Toyo and Eo ¼ ToAo, calculated
with the outputs of the Kalman filter algorithm, respec-
tively applied to the observed signal and to each column of
the model matrix. Both vectors are obtained by keeping
elements corresponding to observed data only. The Kalman

algorithm is thus used here as a device to compute the
weighted vectors involved in the GLS.

IV. THEORETICAL UNCERTAINTY AND
DETECTION ISSUES

This is of key interest to be able to assess the statistical
uncertainty of a given estimation, especially in a context
where the experiment cannot be reproduced a large number
of times. In this section we present a tool to quantify the
uncertainty of the regression result and to give a confidence
threshold for the detection of the signal of interest. To
achieve this goal, the estimator variance matrix must be
estimated.
The correlation matrix can be approximated under the

assumption that the AR model is a good approximation of
the real noise correlations. This hypothesis is equivalent to
assuming that the estimator has minimal variance (i.e., that
the estimator is the BLUE). Let C be the covariance matrix
of the estimator β̂. Then Eq. (9) gives, by replacingW by To
and A by Ao,

Ĉ ≈ σ20ðEo
†EoÞ−1; ð25Þ

where σ0 accounts for the fact that the covariance is known
up to a proportionality constant. For an unbiased estimator
(i.e., the model matrix Ao describes all the deterministic
components of the signal) this can be estimated by

σ̂20 ¼
ê†z êz

No − q
; ð26Þ

where êz is the vector of weighted residuals defined by
êz ≡ eo − Eoβ̂. The statistic to be considered is

Zk ≡ β̂kffiffiffiffiffiffiffiffi
Ĉk;k

q ; ð27Þ

where k is the index corresponding to the parameter of
interest in the vector β. For our application βk is the
EP parameter δ. Here we assume that the underlying
process is Gaussian, which is reasonable in the case of
the MICROSCOPE instrumental noise. Then under the
assumption that there is no violation signal (hypothesis
H0), Z approximately follows a normal law with mean zero
and unit variance. A detection threshold with a ð1 − αÞ
confidence level is given by imposing that the probability to
observe a value above the threshold, under H0, must be
lower than α. This gives the threshold z ¼ Φ−1ð1 − α

2
Þ,

where Φ is the normal cumulative distribution function
(CDF). Therefore if jZj is above the threshold, then a signal
is detected with a confidence of 100ð1 − αÞ%. Conversely,
for a given estimation of the EP signal, the violation can be
claimed at a 100ð2ΦðZÞ − 1Þ% confidence level. Typically,
a 99% confidence test requires z ¼ 2.56.
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V. APPLICATION TO SIMULATED DATA OF THE
MICROSCOPE MISSION

A. The MICROSCOPE experiment

The WEP is at the basis of general relativity. Its concrete
manifestation is the universality of free fall, stating that a
body in a gravitational potential is accelerated independ-
ently of its mass and internal composition. Current efforts
to build new unification theories may call this principle
into question [23], postulating the existence of addi-
tional fundamental interactions. To provide an experimen-
tal discrimination of these theories, the goal of the
MICROSCOPE space mission is to test the WEP within
a precision of about 10−15 never reached by previous
ground-based experiments [24,25]. This space-borne test
takes advantage of the duration of the fall by integrating the
data over several orbits.
The mission payload is an ensemble of two electrostatic

differential accelerometers composed by a cage containing
two cylindrical and coaxial test masses (TM). One accel-
erometer is devoted to the EP test, while the other serves as
a reference. In the first accelerometer, the two TM have
different compositions: one is made of platinum rhodium
alloy (PtRh) and the other of titanium alloy (TA6V) [26].
In the second accelerometer the TM are both made with
PtRh. The masses, whose potential is kept constant via a
thin gold wire, are servocontrolled by a set of electrodes to
follow the same trajectory. The MICROSCOPE science
signal is the difference between the accelerations applied to
the two TM, which are deduced from the applied electro-
static forces needed to maintain them relatively motionless
at the center of the cage. A drag-free system ensures that
the measured common acceleration, i.e., the mean accel-
eration of the two TM, is nullified. A violation of the WEP
would result in a difference between the two measured
accelerations.
The violation signal is expected to be periodic with a

frequency fEP because of the projection of the gravitational
acceleration onto the science axis of the instrument during
the orbital trajectory. For a satellite inertial pointing
session, fEP is equal to the orbital frequency. For a slowly
rotating satellite in the orbital plane, this is equal to the sum
of the orbital frequency and the satellite spin frequency.
The duration of each session is chosen in order to reach a
standard deviation error of about 10−15 on the EP parameter
δ, which is almost equal to the Eötvös parameter. The
inertial and spin sessions last, respectively, 120 and 20
orbits. The specificity of the data samples to be analyzed in
the MICROSCOPE mission is that the signal of interest has
a low SNR that lies at low frequencies (10−4−10−3Hz) in a
time series with a broad frequency range (10−5−2Hz),
blurred by a colored noise containing most of its power in
higher frequencies (above 10−1 Hz). In addition, long time
series must be analyzed to achieve a sufficient SNR,
including about 5 × 105 data points for a spin session.

B. Considered data sets

We apply the KARMAmethod to a time series simulated
with a mission simulator. The simulation output is the
differential acceleration vector γ equal to the acceleration
difference between the two masses. This time series is
sampled at fs ¼ 4 Hz and lasts 20 orbits. This corre-
sponds to a spin session, for which the orbital frequency
is equal to 1.7 × 10−4 Hz and the spin frequency is
7.7 × 10−4 Hz. The EP frequency is then equal to the
sum fEP ¼ 9.4 × 10−4 Hz.
In addition to the signal of interest, other perturbations

are present in the measurement as indicated in Eq. (1). They
are mainly due to gradient terms between the center of mass
of the two TM, the relative motion of the TM, and coupling
with the common mode because of instrument defects.
During the experiment, the instrument or the satellite
undergoes excitations that favor the SNR to measure their
amplitudes αi. The corresponding accelerations sp;i are
either modeled or measured, such that the perturbations can
be subtracted from Eq. (1).
Nevertheless, in this simulation we allow for the pres-

ence of gradient perturbations. They come from the slight
off-centering of the test-masses, leading to gravity and
inertia gradient terms. In the simulation we assume that the
TM are off-centered by 20 microns along the x and z axes
which are in the orbital plane. Note that although an off-
centering along the y axis can also exist, it is estimated by
means of dedicated calibration sessions and corrected
numerically before the EP estimation. The EP parameter
is simulated at a level of 3 × 10−15. Thus the regression
model A contains the true acceleration signal gxðtÞ, to
which we add the two perturbations modeled with our
knowledge of gravity and inertia gradients. The noise
added to the data is generated from the PSD model given
by Eq. (6). The signal model reads

γðtÞ ¼ δgxðtÞ þ ΔxTxxðtÞ þ ΔzTxzðtÞ þ zðtÞ; ð28Þ

where we have noted gx the gravitational acceleration
projected onto the x axis, Tij the components of the
gradient tensor, and Δi the off-centerings. Thus in this
case there are three regression parameters: δ, Δx, and Δz.
We consider two types of gap pattern. The first one is a

“tank crackle type” window wa that is generated so that all
gaps are of equal duration (0.5 s) and their positions are
randomly distributed on the sample (uniform distribution
with 260 gaps per orbit). The second one is a “telemetry
losses type” window wb where the gap durations are drawn
from a distribution similar to the telemetry thread of the
PICARD mission [27], with a standard duration of 1 min.
Their positions are distributed in the same way as for the
first window. Each window represents the same fraction of
missing data, of about 2%. Thus window wa comprises
more gaps than window wb (larger Ng) but gaps are shorter
in average. To illustrate this, we plot in Fig. 3 an extract of
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the time series where the data interruptions of each window
are identified by vertical grey bars.
We apply the KARMAmethod and compare the result to

the OLS estimate with missing data to assess the improve-
ment. We also compare the result to the reference given by
the OLS estimator in the case without gaps.

C. PSD estimate from the AR fit

Before starting the whole process, the order of the
AR model must be chosen at step 1. The choice of the
order depends on the PSD of the noise affecting
the measurement and on the observation window. A way
to properly choose the order p is to minimize the Akaike’s
information criterion (AIC) [22] defined as AICðpÞ ¼
2p − 2 log ðLmaxðpÞÞ, where Lmax is the maximized log-
likelihood. In the case of an AR model, this can be
expressed in terms of the estimate of the AR residual
variance σ̂2 which is directly computable from the residuals
of the Burg’s algorithm,

AICðpÞ ¼ 2pþ No logðσ̂2Þ: ð29Þ
Applying Burg’s algorithm to the residual series ẑ defined
in Sec. III A with increasing order k allows us to find the
order that minimizes the AIC.
In the MICROSCOPE case, AICðpÞ is an asymptotically

monotonic decreasing function. In this configuration one
possibility is to choose the order p from which there is no
significant improvement in the AIC, i.e., the minimum
order where the AIC is close enough to the asymptote. For

the studied noise, the AIC typically reaches a plateau
from p ¼ 200.
Nevertheless, in case of very frequent missing data (e.g.,

tank crackles), the variance of the AR coefficients estimates
increases with the order, and so does the variance of the
AIC. This is due to the decrease of the number of usable
data segments (with length larger than p). This can lead to
overestimating the optimal order p. To overcome this
difficulty we can modify the AIC criterion as suggested
by Bos et al. [28] by introducing a penalty accounting for
the increasing estimation variance. We choose to replace
No by pðPp

i¼1
1
Ni
Þ−1 where Ni is the number of usable

segments to estimate the coefficient ai. When applying this
criterion to our simulation with window wa, we find an
optimal order of p ¼ 60.
The process converges after 2 iterations, because the first

estimate of the PSD is influenced by the high amplitude
perturbations of the gradient terms: the main peak has an
amplitude of 2.4 × 10−11 ms−2 at 2fEP, and other peaks are
present at forb and 2forb. In comparison, the EP violation
corresponds to an amplitude of 1.2 × 10−14 ms−2.
We plot in Fig. 4 the estimate of the PSD (red curve)

obtained with the AR coefficients calculated by Burg’s
algorithm with the tank crackles (a) and telemetry (b) win-
dows, along with the real PSD (black curve). The level of
noise of the masked data is shown by the black dotted line.
In addition to the selected order p ¼ 60, we also show the
AR spectrum estimate made with a larger order (p ¼ 200

with window wa, and p ¼ 2000 with window wb) to
illustrate the effect of p. In both cases, we see that the
overall shape of the PSD is well described by the AR
model, especially the f4 slope. However, there is a bias that
increases as the frequency decreases. The reasons why the
AR model cannot accurately describe the low frequency
PSD are twofold:
(1) The order of the AR model is finite and limited by

the longest segment of consecutive available data
(this is typically 700 for the window wa and 50000
for wb). Given that AR models cannot describe 1=f
spectra with a finite number of parameters, a larger
order is necessary to reduce the bias (and the bias is
zero when p tends to infinity).

(2) In the Burg estimation procedure, the larger the AR
order, the larger the variance of the AR coefficient
estimates, because there are fewer segments of
corresponding lengths. This is why we do not
choose the highest possible order, for which seg-
ments of corresponding length are rare.

Since window wb has more spaced and longer gaps than
window wa, it allows for a higher possible AR order leading
to a better restitution of the low frequency shape of the
PSD, with a reasonable variance (see Fig. 4). However, we
choose p ¼ 60 even in the case of window wb for
computational reasons, given that this is the high frequency

FIG. 3. Fraction of the temporal series (black lines) with the
interruption times represented by the grey vertical lines for the
two windows wa (top) and wb (bottom). (a) Tank crackles
window. (b) Telemetry window.
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restitution that matters for a parameter regression purpose,
as we shall see in the next paragraph.

D. Regression results

The results of the linear regression are summarized in
Table I, with p ¼ 60. To test the precision of our method,
we have drawn 400 realizations of the noise and run our
estimation algorithm for each of them, as well as the OLS
estimator. The number of draws is chosen such that the
error on the true value of the standard deviation of the EP
parameter does not exceed 10−16 with a 99% confi-
dence level.
The third column of the table indicates the true value of

the parameters. Columns 4 to 6 show the performance of

the OLS estimator: the sample average μ̂, the theoretical
standard deviation σth given by Eq. (9) and calculated with
the real PSD, and the sample standard deviation of the 400
estimates. The last three columns show the results obtained
with the KARMA method and are detailed below.
The sample mean μ̂ of the estimates obtained with

the KARMA method converges to the true value of the
parameters (seventh column of Table I), showing that the
constructed estimator is unbiased.
We also calculate the sample standard deviation of the

EP parameter. For short and numerous gaps (tank crackles
window) we find σ̂ ¼ 1.1 × 10−15 with our method instead
of 6.5 × 10−14 with the OLS estimator. Thus our method
enables us to divide the stochastic error by a factor 60 with
respect to the OLS.

FIG. 4 (color online). PSD estimates of the noise in the presence of missing data. The black dashed curve is an estimate of the masked
data PSD [obtained using Eq. (5)], the black solid curve is the actual noise PSD, and the red and blue curves are the PSD estimates of the
AR model obtained with Burg’s algorithm. The periodograms of the regression residuals are also plotted for the complete (dark grey)
and masked (light grey) cases. (a) Tank crackles gaps. (b) Telemetry losses.

TABLE I. Mean and standard deviations on the estimation of the parameters of interest using OLS and the KARMA method. In both
cases we present (from left to right) the estimation average calculated on a sample of 400 estimates, the analytical standard deviation,
and the sample standard deviation. For OLS, the analytical uncertainty σth is given by Eq. (9), which is exact. For the KARMA method,
σ̂AR is the average of the uncertainties estimated for each draw with Eq. (25).

Ordinary least squares Kalman-AR Model Analysis

Window Param. True μ̂ σth σ̂ μ̂ σ̂AR σ̂

Complete data δ [10−15] 3 3.01 0.96 1.02 2.98 0.92 0.96
Δx [μm] 20 20.0 0.003 0.005 20.0 0.004 0.003
Δz [μm] 20 20.0 0.003 0.005 20.0 0.004 0.003

Tank crackles δ [10−15] 3 8.82 62.3 65.2 2.98 1.19 1.14
Δx [μm] 20 20.0 0.290 0.296 20.0 0.006 0.004
Δz [μm] 20 20.0 0.292 0.314 20.0 0.006 0.005

Telemetry δ [10−15] 3 3.15 5.20 5.07 2.98 0.93 0.98
Δx [μm] 20 20.0 0.021 0.021 20.0 0.004 0.003
Δz [μm] 20 20.0 0.024 0.024 20.0 0.004 0.003
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For fewer and longer gaps (telemetry window), we find
σ̂ ¼ 9.8 × 10−16 instead of 5.1 × 10−15 with the OLS. We
notice that such a gap pattern has less impact on the
estimation performance, because it leads to a lower
frequency leakage as confirmed by Eqs. (A3) and (A4)
of Appendix A (also see Bergé et al., in preparation).
These are satisfying results since the theoretical uncer-

tainty of the OLS without any missing data is equal to
9.6 × 10−16. The detection test is positive with a confidence
greater than 99% in both cases.
The improvement is also significant for the other

parameters. Even if they are already well estimated by
the OLS, their uncertainty is reduced by almost 2 orders of
magnitude for the tank crackles window.
For each draw, we estimate the uncertainty σ̂AR using the

approximate formula (25). We then calculate the sample
average of this estimate over the 400 draws and record the
results in the table. We find 1.2 × 10−15 for window wa and
9.3 × 10−16 for window wb. This is close to the calculated
sample standard deviation, meaning that when having only
one realization at hand, one can estimate the error with an
acceptable accuracy. The estimated error does not vary
much from one estimation to another, and it stays within an
interval of �10−16 around the mean.
The estimate σ̂AR of the real regression error may be

biased, depending on the frequency of the estimated signal.
This can be explained by Fig. 4, where we observe that the
PSD of the AR model is biased at low frequency. As a
result, the lower the signal frequency, the larger the bias on
the estimated variance. This is particularly true around zero,
where the AR PSD is below the real one. However, the
overall shape of the real PSD is well captured by the AR
model, which is enough to cancel the leakage due to the
window and get a precision of 1 × 10−15 for the EP
estimation, in agreement with the mission requirement.

VI. CONCLUSION AND DISCUSSION

We have shown that the presence of gaps in time series
affected by correlated noise has a strong impact on the
classical Fourier analysis and on the precision of the
ordinary least squares fits of harmonic signals. This is
due to the frequency leakage of the noise power, which can
increase the uncertainty of the fit by several orders of
magnitude, even if the percentage of missing data is small.
We proposed a method that we dubbed “KARMA,”

which provides a general way to perform precise linear
regressions with large and incomplete data sets affected by
unknown colored noise, and which we applied to mock
MICROSCOPE data. The estimation variance is decreased
down to the same order of magnitude as the least squares
estimator with full data, altered by the natural loss of signal
due to the 1=

ffiffiffiffi
N

p
dependence. The method tends to

approach the minimum variance estimator of the available
data, by approximating the noise autocovariance with a
high order AR model.

Our method uses a weighting of the data relying on the
estimation of the shape of the PSD. As a result, the
performance of the regression mainly depends on the
ability of the autoregressive PSD estimate to recover the
part of the spectrum that is responsible for the leakage,
which is the high frequency part increasing as f4 in the
MICROSCOPE case. Although this is not shown here, the
method has also been successfully tested in a case where
the leaking power comes from a thermal 1=f2 noise
projected onto high frequencies. The AR PSD then
accurately fits the low frequency slope and allows us to
improve the possible regression of high frequency
components.
In addition, the outputs allow us to evaluate the variance

of the estimator from a single estimation. We recover the
magnitude of the true precision, equal to 10−15 in our
MICROSCOPE illustration. The variance is not estimated
with a better accuracy because of the low frequency bias of
the AR PSD estimator. This bias depends on the missing
data pattern, and more particularly on the length of the
longest uninterrupted data segment, as well as the number
of long segments. This determines the AR order to be
chosen, resulting in a trade-off between the bias and the
variance of the PSD estimate.
Concerning the scientific objective of the

MICROSCOPE mission, the above discussion demon-
strates that based on the current noise model of the
accelerometers, we will be able to get a 99% (68%)
confidence level detection of a 3 × 10−15 (1 × 10−15) EP
violation signal, even in the presence of missing data, for a
20 orbit-measurement session (completed in 1.4 days). The
mission should include more than 70 sessions of this type,
allowing for a detection at the 99% level even for an
amplitude of 1 × 10−15. This has been done for short and
very frequent gaps to represent acceleration peaks or
saturations due to MLI or tank crackles, as well as for
longer and fewer gaps to simulate telemetry interruptions.
Further developments will concentrate on how to

increase the accuracy of the noise PSD estimate, for
example, by using the AR model to perform missing data
imputation. Indeed, although this is computationally more
expensive, the AR model can be exploited in a Gaussian
process regression approach [29] to estimate the missing
values.
Finally, there are two potential limitations to the pre-

sented method that can be addressed in further extensions.
On the one hand, although the AR model can be a good
approximation to any PSD and can be fitted very efficiently,
it is still a parametric and thus restrictive model. On the
other hand, noise and signal parameters are estimated
iteratively but separately, so that each step is done
conditionally to the previous one. This may result in a
loss of accuracy. As a result, a possible generalization is to
use the proposed method as an efficient initialization
procedure for a more general regression algorithm that
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would maximize the full likelihood without any prior
noise model.
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APPENDIX A: PSD DEFORMATION IN
THE CASE OF RANDOM MISSING

DATA PATTERNS

We derive here the PSD of the masked data in the case
where the gap positions in the time series are drawn from a
uniform distribution. Let N be the length of the time series,
Ng the number of gaps, and nb;i the indices indicating the
location of the beginning of each gap (such that wnb;i ¼ 0).
Each gap ends at the location nb;i þ dni (we adopt the
convention wnb;iþdni ¼ 1). By uniformly distributed, we
mean that nb is a random variable following a discrete
uniform distribution on the interval ⟦0; N − 1⟧. We also
allow the gap duration dn to be randomly distributed. The
window vector is then generated by drawingNg realizations
of nb and dn.
The probability P to observe data at a time n is calculated

as follows:

P ¼ Pðwn ¼ 1Þ

¼
YNg−1

i¼0

Pðn < nb;i or n ≥ nb;i þ dniÞ

¼ ½1 − Pðnb ≤ nÞ þ Pðnb þ dn ≤ nÞ�Ng : ðA1Þ

The cumulative probability function of nb is given by

Pðnb ≤ nÞ ¼ nþ 1

N
: ðA2Þ

In the case where the duration of the gaps is fixed (i.e.,
dni ¼ dn0 ∀i), Eq. (A1) gives

Pðwn ¼ 1Þ ¼
�
1 −

nþ 1

N
þ n − dn0 þ 1

N

�
Ng

¼
�
N − dn0

N

�
Ng

: ðA3Þ

Therefore the probability law of wn is a Bernoulli’s law
of parameter P. Its expectation is μw ¼ P and its variance
is σ2w ¼ Pð1 − PÞ. We notice that P is independent of
time, and the autocovariance function of w is simply
RwðnÞ ¼ σ2wδðnÞ where δðnÞ is the delta Dirac function.

Then we use Eq. (5) to calculate the PSD of the masked
data,

SyðfÞ ¼ P2 · SzðfÞ þ Pð1 − PÞ
Z fs

2

−fs
2

Szðf0Þdf0: ðA4Þ

APPENDIX B: DERIVATION OF A SIMPLIFIED
EQUATION FOR THE OLS VARIANCE IN

THE HARMONIC CASE

We derive here the approximate expression of the
variance of the ordinary least squares estimator used
in Sec. II.
We start from Eq. (9). In the case of a simple harmonic

model, the matrix Aw is a column matrix and the covariance
formula can be written as

Varðδ̂Þ ¼ A†
wΣwAw

ðA†
wAwÞ2

:

As reminded in Eq. (10), the covariance matrix is diago-
nalizable in the Fourier space. We keep the same notations
in the following. In addition, we use the fact that the DFT
operator is a Vandermonde matrix (sinceM†M ¼ NI with I
the identity matrix); therefore the variance can be rewritten
in terms of the DFT of the windowed model Aw, noted
~Aw ¼ MAw,

Varðδ̂Þ ¼ Nfs
~A†
wD ~Aw

ð ~A†
w
~AwÞ2

:

By developing this expression we get

Varðδ̂Þ ¼
P

N−1
k¼0 j ~Awkj2NfsŜyk
ðPN−1

k¼0 j ~Awkj2Þ2
:

For the windowed harmonic model Awn ¼
wnγEP sinð2πnfEP=fs þ ϕEPÞ, ~Aw is the convolution of
the DFT of the window and the DFT of the EP signal.
In the case of a random window, j ~Awj usually peaks at
the EP frequency with a value of γEPNo=2 where No is the
number of observed data (where wn ¼ 1). To simplify the
calculations, we neglect the terms at all other frequencies.
This amounts to ignoring the leakage of the harmonic
signal [but note that the leakage of the noise component is
present in Sy through Eq. (5)]. Furthermore, if we assume
that the integration period is an integer multiple of the
EP period (i.e., there exist an integer kEP such that
fEP ¼ kEPfs=N), then we have

Varðδ̂Þ ≈ γ2EP
N2

o
4
NfsðSyðfEPÞ þ Syð−fEPÞÞ

ð2 × γ2EP
N2

o
4
Þ2

;

where we have made the approximation, valid for large
N, that the DFT of the autocovariance function in
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Eq. (11) is equal to the real PSD. By simplifying we get
Eq. (12),

Varðδ̂Þ ≈ 2fsNSyðfEPÞ
N2

oγ
2
EP

:

Note that in the case of a complete data set (wn ¼ 1 ∀n)
we have No ¼ N and this formula is more accurate
because the model j ~Awj exactly peaks at γEPN=2.

APPENDIX C: STATE SPACE EQUATION
OF AN AR MODEL

We detail here the Kalman equations presented in
Sec. III B.
The observation matrix, the model matrix, and the model

noise matrix are defined, respectively, by

H ≡ ð1; 0;…; 0ÞT;

F≡

0
BBBBBBBB@

0 1 0 � � � 0

0 0 1 � � � 0

..

. ..
. ..

. ..
. ..

.

0 0 0 � � � 1

−ap −ap−1 −ap−2 � � � −a1

1
CCCCCCCCA
;

G≡ ð1; g1;…; gp−1ÞT:

The vector G whose elements are defined by ϵngj ≡
znþj−1jn − znþj−1jn−1 can be calculated from the AR param-
eters (see Jones [17]).
The Kalman filter equations in the presence of missing

data are briefly reviewed here.
Prediction equation

xðnjn − 1Þ ¼ Fxðn − 1jn − 1Þ;
Σðnjn − 1Þ ¼ FΣðn − 1jn − 1ÞFT þQ;

where Q≡GGT .
Update equation
The update equation adapted to the missing data case can

be formulated as follows:

ΣðnjnÞ ¼ wnfΣðnjn − 1Þ − KðnÞHTΣðnjn − 1Þg
þ ð1 − wnÞfΣðnjn − 1Þg;

xðnjnÞ ¼ wnfxðnjn − 1Þ þ KðnÞðzðnÞ −HTxðnjn − 1ÞÞg
þ ð1 − wnÞfxðnjn − 1Þg;

where we defined

KðnÞ≡ Σðnjn − 1ÞHðHTΣðnjn − 1ÞHÞ−1:

Note that if the data are not observed at time n, the state
variance and the state vector are not updated and set equal
to the predicted values at a previous time.
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