

Simultaneous Dual-Species Atom Interferometry

A. Bonnin, N. Zahzam, Y. Bidel & A. Bresson

ONERA, DMPH, BP 80100, 91123, Palaiseau, France SENSORS AND MICRO-TECHNOLOGY UNIT

retour sur innovation

Applications of Cold Atom Interferometers

Weak Equivalence Principle

The Weak Equivalence Principle or the Universality of Free Fall:

"The general theory of relativity owes its existence in the first place to the empirical fact of the numerical equality of the inertial and gravitational mass of bodies"

Albert Einstein, Lecture at King's College, London, 1921

Galileo thought experiment

Eötvös Parameter:

 $\eta(A,B) = 2 \frac{\left(\frac{m_g}{m_i}\right)_A - \left(\frac{m_g}{m_i}\right)_B}{\left(\frac{m_g}{m_i}\right)_A + \left(\frac{m_g}{m_i}\right)_B}$

 $\eta(A,B) = 2\frac{(a_A - a_B)}{(a_A + a_B)}$

Today:

 $\eta \le 1.8 \times 10^{-13}$

Lunar Laser Ranging, Torsion Balance

Dual-species atom accelerometry & Weak Equivalence Principle

New type of test masses (new species, spin, bosons – fermions, bigger λ_{DB} ...)

• Extend the range of test parameters

Measurement principle & quantum test of the WEP :

- Free fall of two objects of different compositions with respect to the same frame: the Earth
- The objects : two matter waves, cold atoms (⁸⁵Rb & ⁸⁷Rb) falling in vacuum
 - Acceleration measured by atom interferometry
 - \rightarrow highly sensitive and stable measurement

Dual-species atom accelerometry & Weak Equivalence Principle

Dual-species atom accelerometry & Weak Equivalence Principle

Atom interferometry

Atom interferometry

Full Sequence of Measurement

the Department of the local division of the

Test of the Weak Equivalence Principle

First simultaneous dual-species interferometric signal:

Simultaneous interferometric fringes

- Non-zero differential phase:
 - ✓ Slightly different scale factors
 - ✓ Systematic effects

A. Bonnin et al, Phys. Rev. A 88, 043615 (2013)

TABLE II. Main contributions affecting the differential acceleration measurement.

Expt. results	$\Delta g/g \ (imes 10^{-7}) \ -27.6$	Uncertainty $(\times 10^{-7})$ 0.25
Term 2 $(\delta k / k_{\rm eff})$	49.4	0
Term 6 correction:		
Additional lines	-23.3	1.1
Frequency shifts	0.3	2.9
Coriolis effect	0	0.6
Wavefront aberrations	0	0.1
Total	1.2	3.2

A. Bonnin et al, Phys. Rev. A 88, 043615 (2013)

After systematic effects correction:

1,2 ± 3,2).10

State of the art test of the Weak equivalence Principle with atom interferometry (limited by systematic effects uncertainties)

Simultaneous measurement & Common-mode noise rejection

Simultaneous measurement & Common-mode noise rejection

Alexis BONNIN, DAMOP 2015, June 8-12 2015

Simultaneous measurement & Common-mode noise rejection

Sensitivity & Resolution on differential acceleration

Allan deviation of the differential acceleration: the acceleration is derived from ellipses

Atom Inertial Sensors Team at ONERA

Lhank you for your attention

Alexis BONNIN, DAMOP 2015, June 8-12 2015