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Introduction to the data analysis framework

The measurement equation

We measure the difference s between the accelerations of the two test-masses
w.r.t. time:

−−→
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δ
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2
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We want to detect and estimate the EP violation signal. In order to reject the bias
of the perturbation terms, a linear regression analysis must be performed to
estimate δ and all the instrumental parameters.

We are annoyed by :

deterministic perturbations : Earth
gravity gradient, inertial forces,
instrument defects...

random perturbations : noise,
unpredicted accelerations peaks ⇒
corrupted or unavailable information
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Introduction to the data analysis framework

The measurement equation

We then obtain time series:

s(t) = δg(t) +

q∑
i=1

αipi(t) + n(t)

Equivalently in matrix formulation:

s = Aβ + n

A =
(
g(t) p1(t) . . . pq(t)

)
β =

(
δ α1 . . . αq

)T
δ : EP violation signal parameter, to be estimated

αi : perturbations parameters, to be estimated

n(t) : stationary noise of unknown power spectral density S(f)

Ordinary least squares solution:

β̂ = (A∗A)−1 ·A∗s
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Treatment of perturbations

The data process

Calibration sessions 

Excitation of the satellite or the 

test-masses (10 orbits each) 

Estimation of 
calibration parameters 

Inertial or spin pointing 

(120 or 20 orbits) 

EP test sessions 

Estimation of the 
Eötvös parameter 

Data correction 

Scale factors, off-centering, 

coupling… 
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Treatment of perturbations

Treatment of modeled perturbations

We have physical models or measurement of the perturbations involved in the
equation of the differential acceleration. The strategy is to fit their amplitudes via
least square linear regression and remove them from the signal.
Example: removing the gradient terms due to off-centerings
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Treatment of perturbations

Treatment of unmodeled perturbations

Outside the measurement frequency band (centered on fEP), the signal may
contain perturbations that have not been modeled. Proposed strategy:

Most of the perturbations signals are expected to be harmonic, with
frequency fp and phase φp: Ap sin(2πfpt+ φp)

These perturbations induce a bias at fEP, depending on fp and φp

Fig.1 Normalized projection rate as a function of phases Fig.2 Normalized projection rate as a function of frequency 

Worst case: maximize the projection rate w.r.t the phase
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Treatment of perturbations

Treatment of unmodeled perturbations

Maximum bias w.r.t. the phase (Hardy et al, 2013):

τmax =
4

T

1∣∣ω2
EP − ω2

p

∣∣ ∣∣sin (ω2
pT/2

)∣∣2√ω2
EP cos2 φEP − ω2

p sin2 φEP (1)

Most of the perturbations are expected to be at frequencies multiple of the orbital
frequency forb and the spin frequency fspin. For these frequencies, the bias is
nullified if one chooses a spin frequency fspin and an integration time T such that:

T =
k1

forb
, k1 ∈ N (2)

fspin =
k2

T
, k2 ∈ N (3)

If fp = n1forb +n2fspin, then τmax = 0
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Treatment of perturbations

Treatment of unmodeled perturbations

And what if the frequency of the perturbation signal is arbitrary? What is left is
statistical detection of unknown periodicities. Some simulations using maximum
likelihood algorithm by MCMC show quite good results. Can be useful also for
search for other physics.

Figure: Amplitude detection threshold and corresponding bias onto the EP frequency as a
function of the frequency of the perturbation signal
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Treatment of perturbations

The missing data problem

Various physical phenomena occur in flight (crackles of the cold gas tank,
telemetry losses, micrometeorites) which perturb or saturate the very sensitive
accelerometer ⇒ some intervals in the time series are not usable

⇒ We have to mask some portions of data with a mask matrix M (diagonal
matrix s.t. Mii = 1 if the data is available, Mii = 0 if the data is missing or
corrupted)
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Treatment of perturbations

The missing data problem

In the presence of missing data, the measurement equation is rewritten by taking
into account the mask vector M :

s = M (Aβ + n)

A =
(
g(t) p1(t) . . . pq(t)

)
β =

(
δ α1 . . . αq

)T
δ : EP violation signal parameter, to be estimated

αi : perturbations parameters, to be estimated

n(t) : stationary noise of unknown power spectral density S(f)

Ordinary least squares solution:

β̂ = (A∗M∗MA)−1 ·A∗M∗Ms

Thus we just fit our model where data is available.
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Treatment of perturbations

The missing data problem

In the presence of missing data, the measurement equation is rewritten by taking
into account the mask vector M :

s = M (Aβ + n)

A =
(
g(t) p1(t) . . . pq(t)

)
β =

(
δ α1 . . . αq

)T
δ : EP violation signal parameter, to be estimated

αi : perturbations parameters, to be estimated

n(t) : stationary noise of unknown power spectral density S(f)

Ordinary least squares solution:

β̂ = (A∗M∗MA)−1 ·A∗M∗Ms

What is the consequence of this?
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Impact of missing data

An example

An example: simulated acceleration of a 20 orbits (1 orbit = 1.6h) spin session
sampled at 4 Hz, and its Fourier representation

Periodogram: Ps,N (f) ≡
1

N

∣∣∣∣∣
N−1∑
i=0

sie
−2jπfiτs

∣∣∣∣∣
2

With a complete data set: σδ = 1× 10−15
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Impact of missing data

An example

The missing data induce a convolution effect between the noise and the
observation window.

E
[
PMn,N (f)

]︸ ︷︷ ︸
Masked noise periodogram

=

∫ fs
2

− fs
2

PM,N (f − f ′)︸ ︷︷ ︸
Mask periodogram

S(f ′)︸ ︷︷ ︸
Noise PSD

df ′

With missing data (2% losses only): σδ = 65× 10−15
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Impact of missing data

Performance of ordinary least squares

In the presence of colored noise, the variance of the ordinary least squares (OLS)
estimate is highly sensitive to the loss of data and directly proportional to the
leakage effect:

Cov
(
β̂
)

= Q−1A∗M∗MΓM∗MAQ−1

with Q = A∗M∗MA. Γ is diagonal in the
Fourier basis (if we apply the Fourier
transformation matrix F ), but
ΓM = MΓM∗ is not. We additionaly
have:

diag (FΓMF
∗)k ∝

∫ fs
2

− fs
2

PM,N (fk−f ′)S(f ′)df ′

→ Leakage effect !
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Developed solutions

Proposed methods

To cope with this problem, 2 solutions with different philosophies have been

developed:

1 Inpainting: fills the data gaps to restore the noise statistics, using a discrete

cosine transform (DCT) dictionary.

completely independent of any physical model
uses a technique originally suitable to signals that are sparse in the
dictionary
applied prior to any regression analysis

2 KARMA: does not fill the data gaps. Estimates instead the noise PSD from

the available data and use it to weight the data to obtain a nearly optimal

weighting (noise whitening).

depends on the physical model
uses a change of basis where the observed data is not correlated
designed to directly perform the linear regression
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Developed solutions

1. Inpainting

Inpainting objective: recover X from observed Y :

Y = MX

Strategy: assume that in a given dictionary Φ, X has a sparse representation
α = Φ∗X (i.e. most of the coefficients of α are zero), and find X̂ = Φα̂ such as:

α̂ = min
α

{
‖α‖1 subject to ‖Y −MX‖22 ≤ σ2

}
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Developed solutions

1. Inpainting

Example: simulation of the MICROSCOPE differential acceleration performed on
a 120 orbits inertial session (averaged over 40 simulations). There are about 300
gaps per orbit of various durations, corresponding to a 3% data loss.

J. Bergé, S. Pires, Q. Baghi, P. Touboul, G. Métris, Dealing with missing data: An inpainting
application to the MICROSCOPE space mission, submitted to Phys. Rev. D
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Developed solutions

2. KARMA

KARMA objective: optimally recover β from observed Y :

Y = M (Aβ + n)

Stragegy in 3 steps:

Estimation of the noise covariance by approximating it wich an
autoregressive (AR) model:

n(t) + a1n(t− 1) + ...+ apn(t− p) = ε(t)

temporal model ⇒ avoids distortion in the Fourier domain

Whitening of the data using with a Kalman filter ⇒ no need to store and
invert the large covariance matrix Σo of the observed data
Yo = Y where Mii = 1. It is equivalent to compute L−1Ao and L−1Yo,
where L is the Cholesky decomposition of Σo: Σo = LL∗

Estimation of the parameters with an approximate generalized least squares
estimator constructed with the orthogonal vector; equivalent to computing:

β̂ =
(
Ao
∗Σ̂−1

o Ao
)−1
·Ao∗Σ̂−1

o Yo
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Developed solutions

Results

Standard deviation of the estimation the EP violation parameter δ :

Q. Baghi, G. Métris, J. Bergé, B. Christophe, P. Touboul, and M. Rodrigues (2015), Regression
analysis with missing data and unknown colored noise: Application to the MICROSCOPE
space mission, Phys. Rev. D 91, 062003
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Developed solutions

Comparisons

Comparison of sample standard deviation [in 10−15 units] calculated from 300
inertial simulation draws:

Data window OLS OLS after inpainting KARMA
Complete 0.76 - -
300 gaps/orbit 13.5 1.10 0.79

→ Both Inpainting and KARMA allow us to reduce the statistical uncertainty by
more than 1 order of magnitude with respect to ordinary least squares

Further improvements of the inpainting algorithm are underway to even more
reduce the reconstruction noise, using a data-driven constraint on the variance in
different spectral bands (with wavelets transforms).

18 / 22 MC IV, 17 November 2015, Palaiseau



Developed solutions

Aside: data reconstruction from KARMA

Even if this is not necessary in a linear regression purpose, the data can be
reconstructed from KARMA outputs using conditional expectation of the
missing data given the observed data :

µm|o = µm + ΣmoΣ
−1
oo (yo − µo)
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Conclusions for the Scientific Mission Center

Implementation in the MICROSCOPE Scientific Mission Center (SMC)

Mission performance and scenario supervision

Scientific exploitation

Monthly + when required

Implementation, processing and 1st analysis

Daily

Operational coordination

1h / week

CECT Ops

Mission & 

Drag-free monitoring

CMS Ops

Mission & 

Payload monitoring

CCC Ops

Platform & Ground Segment

CECT CMSCCC

SWG

Processing and analysis, expertise

Weekly + on request
GEX

Payload environment 

expertise

SPG

Payload, 

Performance & Science

330

GCO

330

GPOM
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Conclusions for the Scientific Mission Center

Conclusion

Data processing tools have been implemented to perform various analyzes
such as estimation of calibration parameters of the instruments during
dedicated sessions in flight, data correction, noise PSD estimation, detection
of unknown harmonic signals

The problem of missing data has been addressed: linear regression in the
presence of missing data and data reconstruction algorithms have been
developed → useful study for cooperation with other scientific space
missions such that LISA Pathfinder

Two methods with different theoretical basis have been implemented and
give similar result: Inpainting and KARMA

Hopefully the precision is still 10−15 in spite of the missing data!

We are able to produce consistent sets of complete data to the scientific
community

Among other data analysis tools, the
presented method is currently
implemented in the Scientific Mission
Center in ONERA facilities near Paris

21 / 22 MC IV, 17 November 2015, Palaiseau



1 

MERCI ! 
THANK YOU ! 
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