COLD DAMPING IN MICROSCOPE
A QUANTUM THERMODYNAMICAL ANALYSIS OF NOISE

Jean-Michel Courty
Laboratoire Kastler Brossel
Main noise source: thermal noise of mechanical damping due to 7 µm gold wire

Active damping from servo control does not increase noise

Proposal

Use Microscope as an experiment
- on thermal noise of large masses at very low frequencies
- on thermal noise active reduction
The physics of cold damping
 analysis in term of thermodynamics
 ultimate limits and compatibility with quantum fluctuations

Using cold damping to improve measurements
 early modelization of a capacitive accelerometer

Proposal for Microscope
Cold damping: Active reduction of thermal noise in electro- or opto-mechanical systems.

Sideband cooling of micromechanical motion to the quantum ground state J. D. Teufel et al. Nature 475, 359–363 (21 July 2011)
Cold damping in optomechanical system

Cooling of a mirror by radiation pressure

Mechanical oscillator is an acoustic mode of a mirror
Motion is measured with Fabry Perot
Force is radiation pressure of a laser
Important elements to consider in sensitivity analysis of actual measurements:

• Thermodynamical and quantum noises
• Active systems for signal amplification and servocontrols
• Spectral analysis of noise
• Modelization of complex devices
Measurement as a scattering signal

Fluctuation-dissipation theorem ensures consistency between the thermal noise of the oscillator and the coupled fluctuations bath.

Unitarity of S matrix enforces thermodynamic constraints quantum constraints.

Scattering of quantum fields.
Description of a measurement

Force estimator

\[\hat{F}_{\text{ext}} \propto r^{\text{out}} \]

\[= F_{\text{ext}} + \sum_{\alpha} \mu_\alpha \alpha^{\text{in}} \]

Added noise

\[\sum_{FF} = \sum_{\alpha} |\mu_\alpha|^2 \sigma_{\alpha\alpha}^{\text{in}} \]

Thermal and quantum noises

\[\sigma_{\alpha\alpha}^{\text{in}}[\omega] = \frac{1}{2} \coth \frac{\hbar |\omega|}{k_B T_a} \]

\[= \frac{1}{e^{\frac{\hbar |\omega|}{k_B T_a}} - 1} + \frac{1}{2} \]

Thermal

Quantum

\[T \to \infty \quad \hbar |\omega| \sigma_{\alpha\alpha} \simeq k_B T_a \]

\[T \to 0 \quad \hbar |\omega| \sigma_{\alpha\alpha} \simeq \frac{1}{2} \hbar |\omega| \]
Amplification is also treated as a scattering.

Example: operational amplifier

Voltage noise and current noise

Characterized by noise impedance and noise temperature

Charge and Flux are conjugated in quantum regime.

Quantum noise in ideal operational amplifiers,
Courty, Grassia, Reynaud, Europhys. Lett. 46 (1999), 31-37
Cold damping in optomechanical system

Cooling of a mirror by radiation pressure

THE STAR ACCELEROMETER

Detection
amplification noise
back action of servocontrol

Active control of proof mass
restoring force
cold damping

\[\sqrt{\Sigma_{aa}} = 1.2 \cdot 10^{-12} \, \text{m s}^{-2} / \sqrt{\text{Hz}} \]

Quantum theory of fluctuations in a cold damped accelerometer.
 Characterization of all the measurement characteristics
measurement, noise, backaction, correlations

Noise of active control negligible
low temperature of amplifier noise
ratio of signal frequency and operation frequency

Sensitivity limited by residual damping

Quantum theory of fluctuations in a cold damped accelerometer.
Energy is reduced to ground state energy - temperature is zero

Response to the call for ideas

Collaboration with Microscope Team in order to:

- Perform the analysis on current sensor design
- Evaluate effectiveness of cold damping
- Use noise as a source of information on the instrument operation physics
Aim is noise analysis of acceleration sensors.

• Data in all the frequency bands:
 • output of the acceleration sensors
 • data from the measurement chain
 • Data from the probe mass control loop.

• Additional information such as the sensor parameters are also needed (gains in the measurement and in the control loop)

• some housekeeping data would also be useful,
 (temperatures for example)
Which sequence of the mission scenario is concerned?
All sequences of calibration as well as measurement phases

Which specific satellite orientation is needed? Or spin?
No requirement on orientation

It would be useful to have different settings for the probe masses control loops, in particular to compare situations with different values of active damping.

Dedicated sequences of calibration could be useful
In which category would you classify your proposal (this choice is indicative and could evolve after discussions with the SWG): case 1 or case 2?

This proposal concerns mainly category 1
The proposer is able, after discussion with the MICROSCOPE team, to clearly define the mission data that are of specific interest and necessary for his analysis.
In that case, the SPG performs the specific data processing (that must be already sufficiently explained in the proposal) by cooperating closely with the proposer’s team and delivers to the proposer the required data useful for the proposed analysis.

Additional support : This analysis work requires a close interaction with MICROSCOPE Team, for the modelisation of the accelerometer as well as the data preparation and analysis. The support for a post-doc shared between the Microscope Team and LKB would be very helpful.