MICROSCOPE : 6 months before the launch

P. Touboul on behalf of the MICROSCOPE team

The Equivalence Principle

General Relativity

- Weak EP \rightarrow Universality of free fall : all bodies, independently of their mass or intrinsic composition, acquire the same acceleration in the same uniform gravity field
- Lorentz invariance
- Local invariance

Quantum mechanics

\& General Relativity
Unification of the 4 interactions
Alternative theories
\Rightarrow New interaction?
\Rightarrow New particles ?
Dark mass

\Rightarrow Equivalence Principle violation?

In orbit, at $710 \mathrm{~km}, \mathrm{~g}\left(9,81 \mathrm{~ms}^{-2}\right) \rightarrow 8 . \mathrm{ms}^{-2}$
WEP @ 10-15 $\rightarrow 8 \times 10^{-15} \mathrm{~ms}^{-2}$
$\checkmark \quad$ A pedestrian walking at a speed of $5 \mathrm{~km} / \mathrm{h}$ stops with this acceleration in more
 than 5.5 million years and traveled more than 3 million rounds of the Earth.
$\checkmark \quad$ Difference of weight of a supertanker 400 m long, 500000 tones, with or without a Drosophila 0.5 mg on board.

Increase by 100 factor with respect to present accuracy :
$\checkmark \quad$ Distance Earth to Moon: a few cm @ lunar month (29.53 days)
$\checkmark \quad$ Torsion pendulum sensitive to changes in the differential attraction due for instance to gravity gradient of the hill before or after rain
 X 1\%

The principle of the MICROSCOPE space mission

G Inertial or spinning
satellite
\rightarrow Sensiive axis
material 1 (Pt) material 2 (Ti) \rightarrow Gravity

- Gravitational source: the Earth
- inertial acceleration: orbital motion
- 2 masses of different composition: controlled on the same orbit ($<10^{-11} \mathrm{~m}$) by electrostatic pressures
\rightarrow Steady configuration, control of the satellite

- Time span of the measurement: non limited by the free fall (> 20 orbits)
- Environment: limited and controlled perturbations, drag-free satellite
- Signal along Earth monopole direction: well defined phase \& frequency

The principle of the MICROSCOPE space mission

DInertial or spinning
satellite
\rightarrow Sensitive axis material $1(\mathrm{Pt})$ material 2 (Ti) Acceleration \rightarrow Gravity

CNES MYRIADE Microsatellite

- Circular Orbit: 710 km, e $<5.10^{-3}$

Control of the gravity gradient

- Inertial or Rotating: $7.10^{-3} \mathrm{rd} / \mathrm{s}$

Control of the kinetic acceleration

- Mission duration: 2 years depending of thrust gas
- Mass of microsatellite : 320 kg
- Payload budgets: $35 \mathrm{~kg}, 40$ Watts with 2 pairs of mass : Pt-Pt and Pt-Ti
- 2 differential electrostatic accelerometers
(2 pairs of masses: $\mathrm{Pt} / \mathrm{Pt} \& \mathrm{Pt} / \mathrm{Ti}$)
- $f_{e p}=$
$>$ Inertial mode: $\mathrm{f}_{\text {orb }}$
$>$ Spinning mode: $\mathrm{f}_{\text {orb }}+\mathrm{f}_{\text {spin }}$

MICROSCOPE Satellite design

2 differential accelerometers in thermal cocoon

ONERA

MICROSCOPE satellite thermal stability \& in orbit configuration

Heliosynchronous orbit : steady external configuration

- 3 locations for the payload units versus thermal requirements
\square Fine passive decoupling and well protected radiator from Earth radiations
\square Models and dedicated tests, performed in 09-10, confirm :
\checkmark the thermal case fine insulation
\checkmark the instrument low sensitivities of mechanical core \& Electronics
\checkmark the low power consumption and fluctuations


```
-2 similar instruments, each including one pair of masses :
->2 pairs of masses: Pt / Pt & Pt / Ti
Double difference of four inertial sensor outputs
Scientific data &
AOCS data for pointing and continuous drag compensation
```


ONERA
12 Pierre Touboul, ONERA, Microscope Colloquilm IV, Palaiseau, November 16-17, 2015

Satellite integration

CNES courtesy

SU + FEEU + ICU

SU'sFM : Sensors

- The sensor core is in accordance with the performance requirements.
- Delivered to CNES on Sept 17th of 2014
- $\quad \rightarrow$ integration in S/C cocoon

FEEU QFM1 + FM2 : Low noise Electronics U.

- \quad Qualified in July 2014.
- Final performance tests in summer
- Delivered to CNES on $15^{\text {th }}$ October 2014
- $\quad \rightarrow$ integration in S/C cocoon

ICUME QFM : Digital Electronics U.

- Qualification and delivery end of March 2015
- Interface test with S/C : OK
- EMC test of the S/C: OK

\qquad

Measurement principle

1 inertial sensor $=1$ mass with reference voltages +6 servo-channels +1 read-out circuit

> Same orbital motion at better than $10^{-11} \mathrm{~m}$ wrt stabilized same reference

> Measured applied accelleration at better
> than $10^{-15} \mathrm{~ms}^{-2}$

$$
\frac{m_{G k}}{m_{I k}}=1+\delta_{k} \quad \quad \overrightarrow{\Gamma_{A p p, k}}=\frac{\vec{F} e l_{k}}{m_{I k}}=\frac{M_{G s a t}}{M_{I s a t}} \vec{g}\left(O_{s a t}\right)-\left(1+\delta_{k}\right) \vec{g}\left(O_{k}\right)+R_{I n, C O R}\left(\overrightarrow{O_{s a t} O_{k}}\right)-\frac{\overrightarrow{F p} p a_{k}}{m_{I k}}+\frac{\vec{F} e x t}{M_{I s a t}}+\frac{\vec{F} t h}{M_{I s a t}}
$$

Capacitive sensing:		Internal Mass ($1,4 \mathrm{~kg}$)	External Mass (0,4kg)
	X	$12 \mu \mathrm{VHz}{ }^{-1 / 2}=410^{-11} \mathrm{mHz}^{-1 / 2}$	$6 \mu \mathrm{VHz}{ }^{-1 / 2}=2.510^{-11} \mathrm{mHz}^{-1 / 2}$
	Y,Z	$6 \mu \mathrm{VHz}{ }^{-1 / 2}=2.510^{-11} \mathrm{mHz}^{-1 / 2}$	$3 \mu \mathrm{VHz}{ }^{-1 / 2}=110^{-11} \mathrm{mHz}^{-1 / 2}$
Electrostatic control \& measurement :		Internal Mass	External Mass
	X	1.1 $\mu \mathrm{VHz} z^{-1 / 2}=2010^{-15} \mathrm{NHz}^{-1 / 2}$	$1.6 \mu \mathrm{VHz}^{-1 / 2}=5210^{-15} \mathrm{NHz}^{-1 / 2}$
	Y,Z	$2.3 \mu \mathrm{VHz}{ }^{-1 / 2}=16010^{-15} \mathrm{NHz}^{-1 / 2}$	$2.3 \mu \mathrm{VHz}^{-1 / 2}=7100^{-15} \mathrm{NHz}^{-1 / 2}$

Proof mass reference voltage: $\quad \mathrm{Vp}=5 \mathrm{~V} ; 0.22 \mu \mathrm{VHz}{ }^{-1 / 2} ; 13 \mathrm{ppm} /{ }^{\circ} \mathrm{C}+$ stability compatible with 5 mK fluctuations
Power supply: $0,1 \mathrm{mV}$ for 1 V satellite power bus variation \& $2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$

FM Drop 05 et 06 : 20th March of 2014 1st results

FM error budgets

Similar to GOCE sensor noise performance : demonstrated in orbit by a factor 2 at least in the [$5,10^{-3} ; 10^{-1}$] bandwidth
MICROSCOPE at lower frequency, smaller bandwidth and longer integrating period

Overall mission error budget :

- 59 disturbing sources evaluation stochastic \& tone
- Instrument : more than 100 contributions

Taking into account verified instrument and satellite charcteristics

	stochastic disturbing source	tone disturbing source	$\begin{gathered} \text { EP } \\ \text { (120 orbits) } \end{gathered}$	$\begin{gathered} \text { EP } \\ \text { (240 orbits) } \end{gathered}$	$\begin{gathered} \text { EP } \\ \text { (360 orbits) } \end{gathered}$
	$\mathrm{ms}^{-2} / \mathrm{Hz}^{1 / 2}$ quadratic sum	$\begin{gathered} \mathrm{ms}^{-2} \\ \text { direct sum } / 3 \end{gathered}$			
Inertial satellite pointing ($\mathrm{f}_{\text {EP }}=\mathrm{f}_{\text {orb }}=1,710^{-4} \mathrm{~Hz}$)	6,64 10-11	7,5810 ${ }^{-15}$	$1,3810^{-15}$	$1,1910^{-15}$	
Rotating satellite attitude ($\mathrm{f}_{\mathrm{EP}}=11 / 2$ or $11 / 2 \mathrm{f}_{\text {orb }}=7,7$ or $9,410^{-4} \mathrm{~Hz}$)	6,64 10-12	6,64 10-13	0,58 10-15	0,48 10-16	$0,4510^{-17}$

Electronics thermal fluctuations \qquad O menemar

What do we measure ? Earth's, satellite, instrument, physics contributions

> Stochastic and Tone Signals to be considered with a limited observation period and some lacks of data
> \rightarrow Estimate of the mass off-centering and Earth gravity gradient corrections
> \rightarrow Difference of sensitivity \& alignment corrections
> \rightarrow Non linearities verifications

MICROSCOPE Major mission specifications Instrument/Satellite dynamics

Earth Gravity Gradient	\rightarrow	eccentricity < 5.10-3	
		S/C position tracking (Doppler) :	< 7 m , < 14m, 100m @ fep
		Pointing : $10^{-3} \mathrm{rad}$ with variations	< $10 \mu \mathrm{rad}$ (inertial) \& $10 \mu \mathrm{rad}$ (spin) @ fep
Mass Off-Centering	\rightarrow	Angular velocity variations	< 10-9 rad/s (spin) @ fep
		Angular accelerations variations	< $10^{-11} \mathrm{rad} / \mathrm{s}^{2}$ (inertial)
			\& $510^{-12} \mathrm{rad} / \mathrm{s}^{2}$ (spin) @ fep
Sensitivity Matching	\rightarrow	Drag-Free Control	< $3.10^{-10} \mathrm{~ms}^{-2} \mathrm{~Hz}^{-1 / 2}$ and
			$<10^{-12} \mathrm{~ms}^{-2}$ variations @ fep

Instrument characteristics and in-orbit calibration :

- Resolution : $<2.31^{-12} \mathrm{~ms}^{-2} \mathrm{~Hz}^{-1 / 2}$ and $2.61^{-9} \mathrm{rads}^{-2} \mathrm{~Hz}^{-1 / 2}$
- Sensitivity stability $<6.810^{-8}$ sine (FEEU thermal effect) and $1.210^{-5} \mathrm{~Hz}^{-1 / 2} @$ fep
- SF matching : < 1.5 10-4
- with stability : $\quad<0.310^{-8}$ sine (SU thermal effect) and $3.10^{-6} \mathrm{~Hz}^{-1 / 2} @$ fep
- Alignment matching ${ }^{*}$: < $5.10^{-5} \mathrm{rad}$
- with stability : <1.5 $10^{-9} \mathrm{rad}$ sine (SU thermal effect) and $3.10^{-7} \mathrm{rad} \mathrm{Hz}{ }^{-1 / 2} @$ fep

MISSION SCENARIO

- Mission duration driven by gas consumption
- Assessment sessions of the satellite, the instrument, the propulsion system, the drag-free and attitude control
- But also performance sessions with mass displacement, accelerometric, magnetic, thermal excitations
- Measurement session (with margin for lack of data)
- Inertial pointing : 123 orbits
- Rotating pointing: 6×20 orbits
- Calibration sessions before and after the test sessions
- Possibility to perform an actual centering of the mass
- Foreseen scenario can be rescheduled according to the obtained results :
- Each possible sequence is precisely defined, argued and tested
- CMS with autonomous software to evaluate operating conditions
- Dedicated every week procedures

```
system guaranteed scenario:
99.8% confidence
->3155 orbits
scientific objectives scenario :
80% confidence
>4921 orbits
```


A PRIORI SCENARIO

	orbits	days	propulsion ON
S/C, T-SAGE, Propulsion system, AOCS laws with \& without T-SAGE Assessments	369	25	178
Thruster calibration, drag-free operation	59	4	59
Total Commissionning step 1	428	29	237
Drag-free \& calibration assessment	150	10	128
Margin	145	10	145
Total Commissionning step 2	295	20	273
Limited Test EP \& REF inertial and spinned attitude	360	25	360
Performance Test	898	62	898
Total Preliminry EP Test	1258	87	1258
Break	200	14	0
Calibration EP \& REF	300	21	300
Full Test EP \& REF	1068	73	1068
Total EP Test	1568	108	1368
Calibration EP \& REF	192	13	192
Half Test EP \& REF with centered test mass	534	37	534
Total EP Test with centered test-mass	726	50	726
Spinned Test EP \& REF Complement	568	39	568
Calibration EP \& REF	192	13	192
Inertial Test EP \& REF Complement	250	17	250
Total complement EP Test	1010	70	1010
TOTAL	5285	364	4872

Performance tests :

1. Response to Heavyside in acceleration and in position
2. Relative orientation of star tracker (Gravity Model \& S/C attitude) \& instrument axis (mass motion) : $\eta c+\theta c$
3. Sensitivity to S/C acceleration along each axis \rightarrow difference of sensitivity and non linearity + alignments
4. Sensitivity to Test-mass motion along each axis \rightarrow stiffness, non linearity, self gravity
5. Sensitivity to high frequency acceleration signal in the loop along each axis \rightarrow individual non linearities
6. Sensitivity to 3 in the band acceleration signal along the 3 axes \rightarrow coupling
7. Sensitivity to magnetic field
8. Sensitivity to thermal fluctuations of the SU, th FEEU
9. Sensitiy of $3,4,5$ to mass potential and position

Scientific and operational organisation

Scientific organization : Science Working Group

PI (ONERA) who is the Chairperson	Pierre Touboul
co-PI (OCA)	Gilles Metris
ZARM co-I for Space Physics	Claus Lämmerzhal
DLR co-I	Hans Dittus
General Relativity and Gravitation	Thibault Damour
Fundamental Interactions	Pierre Fayet
Interdisciplinary Physics	Serge Reynaud
Earth gravity field	Isabelle Planet
Aeronomy	Peter Visser
European scientist representative of similar space missions	Tim Sumner
CNES Fundamental Physics coordinator	Sylvie Léon-Hirtz
CMS manager	Manuel Rodrigues
CNES project manager	Yves André
Payload manager	Manuel Rodrigues
CECT chairman	Alain Robert

Investigators and data policy

- Validation Period:
- Start: reception of the first data
- End: when the first data set is calibrated and validated (decision of SWG)
- Status: not released data outside SPG and SWG ;
- Possible publication in agreement with the PI, SWG and Cnes Document (1)
- Diffusion Period:
- Begins at the end of the validation period
- Status: data dissemination to the whole community; no restriction on publication.
- New investigators can be selected after call for proposals for the use of data
- Proposals can address the main objective of MICROSCOPE or other objectives in fundamental physics or other themes
- Proposals and applicants are selected by SWG
- The new investigators can have access to the data during the validation period in the framework described in the document (1)
(1) " MICROSCOPE Science Cooperation Rules " CNES/DSP/SME-2013/20946 on 2013/12/06

Conclusion

- The instrument (delivered one year ago) is integrated in its satellite cocoon.
- The satellite is integrated with its payload and is under environment tests : present agenda is in agreement with the launch date
- Launch scheduled on Soyouz in April 2016 as a secondary passenger with Sentinel 1B.
The satellite control center and CECT has been developed by Cnes and are under operation tests
- The Science Mission Center has been developed by Onera and is under tests :

Operational software : data exchanges with Cnes, validation and completion, achieving, quick-look, easy analysis : ready

- Scientific analysis : under optimization


```
"I never worry about the future. It comes soon enough."
_Albert Einstein --- Aphorism, 1945-1946. AEA 36-570
«I, too» Pierre T., November 2015
```


END
 Thanks Questions

