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Lorentz symmetry (in short): what

❖ Lorentz symmetry: symmetry of spacetime under Lorentz transformations
   (boosts and rotations)
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physical results of an experiment are independent of
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❖ Lorentz invariant theory:

❖ General Relativity and Standard Model have Lorentz invariance (resp. local and global)

- its orientation- its velocity 
(magnitude and 

direction)



Lorentz symmetry (in short): why testing it

❖ Lorentz symmetry: symmetry of spacetime under Lorentz transformations
   (boosts and rotations)
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❖ General Relativity and Standard Model have Lorentz invariance (resp. local and global)
❖ But could be broken in alternative theories beyond SM and GR: motivation for tests

physical results of an experiment are independent of
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❖ Lorentz invariant theory:
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Lorentz symmetry (in short): how to test it

❖ Lorentz symmetry: symmetry of spacetime under Lorentz transformations
   (boosts and rotations)

❖ Basic experimental approach for test:
     - rotate experiment
     - search for periodic signals
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❖ General Relativity and Standard Model have Lorentz invariance (resp. local and global)

❖ Analysis of tests beyond GR and SM: specific theory or general framework

physical results of an experiment are independent of
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parametrization of deviations from Lorentz invariance

❖ Lorentz invariant theory:

- its orientation- its velocity 
(magnitude and 

direction)

❖ But could be broken in alternative theories beyond SM and GR: motivation for tests



Lorentz symmetry (in short): how to test it

❖ Lorentz symmetry: symmetry of spacetime under Lorentz transformations
   (boosts and rotations)

❖ Basic experimental approach for test:
     - rotate experiment
     - search for periodic signals

Test of Lorentz symmetry with MICROSCOPE MICROSCOPE Colloquium IV, Palaiseau, 16/11/2015C. Guerlin

❖ General Relativity and Standard Model have Lorentz invariance (resp. local and global)

❖ Analysis of tests beyond GR and SM: specific theory or general framework

physical results of an experiment are independent of
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❖ But could be broken in alternative theories beyond SM and GR: motivation for tests

SME
(Standard Model 

Extension)



Framework for LS test: Standard Model Extension (in short)

- parametrizing all possible Lorentz violations (LV) for SM and GR fields
- in the Lagrangian or action of SM and GR
- for fermions, test bodies, gravitational sources...

- one element of one the tensors: one coefficient for LV
- coefficients are allowed to be species dependent 

Test of Lorentz symmetry with MICROSCOPE MICROSCOPE Colloquium IV, Palaiseau, 16/11/2015C. Guerlin

❖ Standard Model Extension (SME): very broad framework for Lorentz symmetry tests
❖ SME structure:

❖ Lorentz violations appear as coupling of dynamics to background fields, 
in general tensors
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space-time component
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µν , (āeff)w

µ )

c̄w
µν , (āeff)w
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Framework for LS test: Standard Model Extension (in short)

- one element of one the tensors: one coefficient for LV
- coefficients are allowed to be species dependent 

when rotating an experiment, background tensors lead to non 
zero signals at harmonics of rotation frequency in observables
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❖ SME structure:

❖ Lorentz violations appear as coupling of dynamics to background fields, 
in general tensors
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- parametrizing all possible Lorentz violations (LV) for SM and GR fields
- in the Lagrangian or action of SM and GR
- for fermions, test bodies, gravitational sources...

❖ Standard Model Extension (SME): very broad framework for Lorentz symmetry tests
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µ , (āeff)w

µ )

= gn(c̄e+p−n
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predictive + avoids averaging over the signal



Framework for LS test: Standard Model Extension (in short)

- one element of one the tensors: one coefficient for LV
- coefficients are allowed to be species dependent 

test-particle dependnt motion in a gravitational field:  
LV WEP violation

when rotating an experiment, background tensors lead to non 
zero signals at harmonics of rotation frequency in observables
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❖ Lorentz violations appear as coupling of dynamics to background fields, 
in general tensors
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µν , (āeff)w

µ )

c̄w
µν , (āeff)w
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- parametrizing all possible Lorentz violations (LV) for SM and GR fields
- in the Lagrangian or action of SM and GR
- for fermions, test bodies, gravitational sources...

❖ Standard Model Extension (SME): very broad framework for Lorentz symmetry tests

(preferred directions)
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a capacitor. Any weak movement of the proof mass with
respect to the electrode modifies the recovering surface or
the gap between them and generates opposite variations
of the relative capacitance. The difference of capacitance
is detected through a charge amplifier and an heterodyne
filtering, and the signal is digitized. The combination of
the signals provided by the different electrodes – that corre-
spond to different axes – provides the mass’s position. The
amplified signal is then and processed with the control
algorithm in order to compute the voltage to apply to the
electrodes in order to compensate for the mass’s motion
and maintain it motionless at the center of the electrostatic
cage. The computed voltage is amplified and opposite volt-
ages are applied to a symmetric pair of electrodes in order
to generate linear actuation forces. The fact that the same
electrodes allow both the action and the detection of the
mass’ position is possible because of the difference of fre-
quency bandwidths: the detection is performed with a
100 kHz pumping signal while the servo-loop channels
exhibit frequency bandwidths of a few Hertz. The gener-
ated voltage is proportional to the sensor acceleration
(Josselin et al., 1999). The proportionality factor depends
on the voltage of the mass. In order to maintain this volt-
age to a constant value, the mass is connected to a 7 lm of
diameter gold wire controlling its electrical potential. It is
the only physical contact between the electrostatically lev-
itated masses and the sensor cage.

The set of electrodes around each mass are engraved on
two gold coated silica cylinders (see Fig. 3). Six pairs of
electrodes enable the measurement of the mass’ position
and attitude and the control of its six degrees of freedom.
The four electrodes of the inner cylinder control the radial
axes ~Y and ~Z in translation and rotation. The outer cylin-
der is in charge of the ultra-sensitive ~X axis. The test of
the Equivalence Principle is performed along this axis
which is optimised to exhibit the best accuracy with a
reduced electrostatic stiffness. The translation along this
axis is controlled by the cylindrical outer electrodes posi-

tioned around the ends of the mass, while the rotation is
controlled by the eight central quadrants of the outer cylin-
der in regard of four flat areas on the mass.

For the Equivalence Principle test, the accelerations of
two masses of different composition are compared. Because
the two masses are cylindrical and concentric, they have the
same gravity center and are submitted to the same gravity
field. The dimensions of the masses are chosen to provide
the same moment of inertia along the three axes (Lafargue
et al., 2002). The two masses and their electrodes constitute
a differential accelerometer. The payload of the satellite,
called T-SAGE (Twin Space Accelerometers for Gravita-
tional Experimentation), consists in two independent and
identical (except the composition of the masses) differential
accelerometers. Developed by ONERA, these instruments
benefit from the experience acquired during previous space
missions such as GRACE and GOCE (Touboul et al.,
1999). The first instrument, which delivers the data to per-
form the test of the Equivalence Principle, includes one
mass of Platinum Rhodium alloy (PtRh10) with 90% Plat-
inum and 10% Rhodium, and one mass of Titanium alloy
(TA6V) with 90% Titanium, 6% Aluminium and 4% Vana-
dium. These materials have been selected among others
(like technological reasons and macroscopic properties)
because they have a large difference in subatomic particles,
which may increase the intensity of the Equivalence Princi-
ple violation (Damour and Blaser, 1994). The second differ-
ential accelerometer is composed of two masses constituted
with the same material, PtRh10. The provided measure-
ments are a reference to check the measurement exactitude.

Each differential electrostatic accelerometer is composed
of three units: the Sensor Unit (SU), the Front End Elec-
tronic Unit (FEEU) and the Interface Control Unit
(ICU). The SU corresponds to the mechanical core of the
instrument: the test masses surrounded each by a set of
electrodes arranged to perform the capacitive sensing of
the mass motion and the control of the electrical fields gen-
erating the electrostatic actuation on the masses. The core

Fig. 1. On the left, the satellite orbits around the Earth with two concentric test masses (yellow and blue) of different composition. A difference in their
trajectories indicates a violation of the Equivalence Principle. For the MICROSCOPE experiment, on the right, the measurement is not the difference of
trajectories, but the difference in the forces applied to maintain the masses relatively motionless. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Each differential electrostatic accelerometer is composed
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WEP: SME coefficients for matter-gravity couplings
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µν , (āe+p−n

eff )µ)

Cωn , Sωn = f(c̄w
µν , (āeff)w
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eff)µ + (āp
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«counter shaded» coefficients
appear only in gravitational experiments

MICROSCOPE:
best constraints expected on 2       and all           coefficients

 improvements from 3 to 6 orders of magnitude over state of the art
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(āe+p−n
eff )µ = (āe
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poorly tested so far (gravimeter, ephemerides)



Modeling and analyzing an experiment in SME

1) model, lab frame: express dynamics or observable including LV coefficients in the «lab» frame 

rich litterature where models derived for 
different experiments

Test of Lorentz symmetry with MICROSCOPE MICROSCOPE Colloquium IV, Palaiseau, 16/11/2015C. Guerlin

2) model, SCF frame: coefficients for LV are compared in a common frame, e.g. Sun 
Centered Celestial Equatorial Frame (SCF)
       use Lorentz transformation of LV tensors to express «lab» coefficients as a function of 
SCF coefficients
- leads to distinct time components due to: boost of the experiment wrt SCF, and rotation
- amplitudes = linear combinations of SCF LV coefficients 
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3)  analysis: decorrelate LV coefficients 

 numerous experimental tests done



SME model for MICROSCOPE in spin mode

Test of Lorentz symmetry with MICROSCOPE MICROSCOPE Colloquium IV, Palaiseau, 16/11/2015C. Guerlin

• Ideal observable: 
   local differential acceleration of the well-centered test bodies along sensitive axis (0 in the
   absence of WEP or Lorentz violation)
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µ ≈ (āeff)e

µ + (āeff)p
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SPIN MODE (most general case)
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• LV model:
time series expansion:

variation amplitude of relative differential acceleration

SPIN MODE (most general case)
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V. A. Kostelecky and J. D. Tasson, Phys. Rev. D  83, 016013 (2011)
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µ = (āeff)e

µ + (āeff)p
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µ − (āeff)n

µ

c̄e+p−n
µ ≈ me

mp
c̄e

µ + c̄p
µ + c̄n

µ

∆E ∝ �I · �J

t
ωr

ωs

ωs ± ωr

ωs ± ωr ± Ω
2ωs − ωr

δh
< δh >

Ω

∆ω

ω Ω
≤ 10−16

∆g

g Ω
≤ 10−9

∆c

c Ω
≤ 10−XX

1/c G h̄

1

• LV model:
time series expansion:

V. A. Kostelecky and J. D. Tasson, Phys. Rev. D  83, 016013 (2011)

variation amplitude of relative differential acceleration

LV frequencies: overlap of 1 frequency with non LV EP model

SPIN MODE (most general case)

harmonics of spin, orbital and 
annual frequencies

Licence de physique LP205 Année 2011-2012
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eff)µ + (āp
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• LV model:
time series expansion:

each amplitude: a linear combination of SME coefficients

linear combination
depends on: boost factors,  species composition of test masses
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V. A. Kostelecky and J. D. Tasson, Phys. Rev. D  83, 016013 (2011)

variation amplitude of relative differential acceleration

LV frequencies: overlap of 1 frequency with non LV EP model

SPIN MODE (most general case)

harmonics of spin, orbital and 
annual frequencies
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µν , (āeff)w

µ )

c̄w
µν , (āeff)w
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eff)µ + (āp
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Expected precision and state of the art

Test of Lorentz symmetry with MICROSCOPE MICROSCOPE Colloquium IV, Palaiseau, 16/11/2015C. Guerlin

• Amplitudes: if the relative uncertainty at each frequency is 
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µν , (āeff)w

µ )
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µ , (āeff)w

µ )

= gn(c̄e+p−n
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µν , (āeff)w

µ )
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adjusted with uncertainty
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Expected precision and state of the art

• Amplitudes: if the relative uncertainty at each frequency is 
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µν , (āeff)w

µ )
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µ , (āeff)w

µ )

= gn(c̄e+p−n
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• SME coefficients:

10-2 GeV-1 differential neutron-to-proton ratio (/ GeV): 
0.06 (/ GeV)
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- species dependence:
scale factors in linear combination:

   prefactor on the order of 

Pt

Ti

#proton

#n
eu

tro
n
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Expected precision and state of the art

Test of Lorentz symmetry with MICROSCOPE MICROSCOPE Colloquium IV, Palaiseau, 16/11/2015C. Guerlin

• Amplitudes: if the relative uncertainty at each frequency is 
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µ , (āeff)e+p−n

µ )

Cωn , Sωn = f(c̄e+p−n
µν , (āe+p−n
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(āeff)w
µ

δa/a ∼ 10−15

∆E ∝ �I · �J

t
ωr

ωs

ωs ± ωr

ωs ± ωr ± Ω
2ωs − ωr

δh
< δh >

Ω

1

• SME coefficients:

10-2 GeV-1 differential neutron-to-proton ratio (/ GeV): 
0.06 (/ GeV)
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- species dependence:
scale factors in linear combination:

   prefactor on the order of 

Pt

Ti

#proton

#n
eu

tro
n
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Uncertainty on SME coefficients: 

these Lorentz-violating effects could be detected by the
GG apparatus that senses the test-body location. Notice
that the signals would be independent of gravity. They may
be detectable using sophisticated terrestrial dynamical-
balancing equipment, perhaps including that used in the
Galileo Galilei on the Ground (GGG) experiment [89]. The
investigation of these effects represents an interesting open
question for future work.

IX. EXOTIC GRAVITATIONAL TESTS

In this section, we offer a few remarks about some
gravitational searches for Lorentz violation using material
test bodies other than neutral bulk matter, neutral atoms, or
neutrons. These more exotic searches typically present
unique experimental challenges, but they could provide
access to combinations of coefficients for Lorentz violation
that are awkward or impossible to isolate and measure in
other searches discussed in this paper. Here, we briefly
consider tests with electrons and ions, studies with antihy-
drogen, and experiments using particles from the second
and third generation of the standard model.

A. Tests with electrons and ions

Measurements of the gravitational acceleration of
charged matter remain of definite theoretical interest be-
cause the WEP and other foundational aspects of gravity
are comparatively poorly tested in this regime. In this
subsection, we consider possible signals from studies of
charged electrons or ions. Given the experimental chal-
lenges of these tests and their limited attainable sensitiv-
ities, we restrict attention here to effects from ð !aweffÞ!,
setting other coefficients to zero for simplicity.

In the context of searches for Lorentz violation, gravi-
tational tests with charged matter offer unique access to the
coefficients ð !aweffÞ!. For example, measurements of this
kind can disentangle coefficients for Lorentz violation in
the proton and electron sectors. They can also detect
certain countershaded effects that are otherwise invisible.
In particular, some models have coefficients ð !aweffÞ! pro-
portional to electric charge, which would evade detection
in searches with neutral test bodies [11]. This possibility is
a natural consequence for theories in which the photon
modes are interpreted as Nambu-Goldstone bosons from

spontaneous Lorentz breaking and in which ð !aweffÞ!
remains physically observable, such as nonminimally
coupled bumblebee electrodynamics [14].
One candidate technique to measure gravitational effects

from the coefficients ð !aweffÞ! is charged-particle interfer-
ometry. Electron interferometry has been used to measure
the Sagnac effect at the 30% level [90], while ion inter-
ferometry is under investigation as a practical tool for
sensitive tests of Coulomb’s law [91]. In the present con-
text, electron or ion interferometry offers an interesting
alternative prospect to the free-fall tests with neutral matter
discussed in Sec. VII. For a given geometry, the observed
phase shift can be determined using the methods of
Sec. VII B. In the limit of interest here, the vertical accel-
eration aẑ of the electron or ion T in the gravitational field
of the Earth S is given at PNO(2) by

a ẑ ¼ $g$ 2g"

mT ð !aTeffÞt̂ $
2g"

mS ð !aSeffÞt̂: (163)

As before, the PNO(3) version of this acceleration can be
frequency decomposed relative to the Sun-centered frame,
with the corresponding amplitudes depending on the
coefficients ð !aweffÞ! as given in Table IV.
In principle, a charged-particle interferometer can be

used for free-fall gravimeter tests of the type discussed in
Sec. VII B or for free-fall WEP tests as in Sec. VII D. A
free-fall gravimeter test is insensitive to ð !aweffÞT and has
only boost-suppressed signals from ð !aweffÞJ, so a substantial
improvement over the existing reach of charged-matter
interferometers would be required to achieve a sensitivity
compatible with perturbative consistency. In contrast, a
free-fall WEP test is directly sensitive to ð !aweffÞT but re-
quires a simultaneous measurement with two test bodies.
One option along these lines could be a direct comparison
with neutral matter via a falling corner cube or an atom
interferometer.
Another approach to gravitational tests with charged

matter is to study the motion of charged particles in a
vertical metallic drift tube. This setup is accompanied
by gravitationally induced electric forces caused by the
sagging of the tube [92], along with a variety of challeng-
ing systematics. An experiment of this type with electrons
[93] confirmed that the gravitational forces on the electrons
in the tube and on the electrons within the metal are

TABLE XI. Sensitivities for satellite-based WEP tests.

Coefficient MicroSCOPE GG STEP

"ð !aeþp$n
eff ÞT $ 1

3m
pð !ceþp$nÞTT {10$13 GeVg {10$15 GeVg {10$16 GeVg

"ð !aeþp$n
eff ÞX {10$9 GeVg {10$11 GeVg {10$12 GeVg

"ð !aeþp$n
eff ÞYþZ {10$9 GeVg {10$11 GeVg {10$12 GeVg

"ð !aeþp$n
eff ÞY {10$7 GeVg {10$9 GeVg {10$10 GeVg

"ð !aeþp$n
eff ÞZ {10$7 GeVg {10$9 GeVg {10$10 GeVg

ð !cnÞQ {10$13g {10$15g {10$16g
ð !cnÞðTJÞ {10$9g {10$11g {10$12g

V. ALAN KOSTELECKÝ AND JAY D. TASSON PHYSICAL REVIEW D 83, 016013 (2011)

016013-38

from V. A. Kostelecky and J. D. Tasson, Phys. Rev. D  83, 016013 (2011)
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µν , (āe+p−n

eff )µ)

Cωn , Sωn = f(c̄w
µν , (āeff)w
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µ , (āeff)w

µ )

= gn(c̄e+p−n
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(āe+p−n
eff )µ ≈ (āe
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• SME coefficients:

10-2 GeV-1 

10-4 (Earth)

differential neutron-to-proton ratio (/ GeV): 
0.06 (/ GeV)

- boost factors (at first order)
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µ + (āeff)p
µ − mp + me

mn
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- species dependence:
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Uncertainty on SME coefficients: 

these Lorentz-violating effects could be detected by the
GG apparatus that senses the test-body location. Notice
that the signals would be independent of gravity. They may
be detectable using sophisticated terrestrial dynamical-
balancing equipment, perhaps including that used in the
Galileo Galilei on the Ground (GGG) experiment [89]. The
investigation of these effects represents an interesting open
question for future work.

IX. EXOTIC GRAVITATIONAL TESTS

In this section, we offer a few remarks about some
gravitational searches for Lorentz violation using material
test bodies other than neutral bulk matter, neutral atoms, or
neutrons. These more exotic searches typically present
unique experimental challenges, but they could provide
access to combinations of coefficients for Lorentz violation
that are awkward or impossible to isolate and measure in
other searches discussed in this paper. Here, we briefly
consider tests with electrons and ions, studies with antihy-
drogen, and experiments using particles from the second
and third generation of the standard model.

A. Tests with electrons and ions

Measurements of the gravitational acceleration of
charged matter remain of definite theoretical interest be-
cause the WEP and other foundational aspects of gravity
are comparatively poorly tested in this regime. In this
subsection, we consider possible signals from studies of
charged electrons or ions. Given the experimental chal-
lenges of these tests and their limited attainable sensitiv-
ities, we restrict attention here to effects from ð !aweffÞ!,
setting other coefficients to zero for simplicity.

In the context of searches for Lorentz violation, gravi-
tational tests with charged matter offer unique access to the
coefficients ð !aweffÞ!. For example, measurements of this
kind can disentangle coefficients for Lorentz violation in
the proton and electron sectors. They can also detect
certain countershaded effects that are otherwise invisible.
In particular, some models have coefficients ð !aweffÞ! pro-
portional to electric charge, which would evade detection
in searches with neutral test bodies [11]. This possibility is
a natural consequence for theories in which the photon
modes are interpreted as Nambu-Goldstone bosons from

spontaneous Lorentz breaking and in which ð !aweffÞ!
remains physically observable, such as nonminimally
coupled bumblebee electrodynamics [14].
One candidate technique to measure gravitational effects

from the coefficients ð !aweffÞ! is charged-particle interfer-
ometry. Electron interferometry has been used to measure
the Sagnac effect at the 30% level [90], while ion inter-
ferometry is under investigation as a practical tool for
sensitive tests of Coulomb’s law [91]. In the present con-
text, electron or ion interferometry offers an interesting
alternative prospect to the free-fall tests with neutral matter
discussed in Sec. VII. For a given geometry, the observed
phase shift can be determined using the methods of
Sec. VII B. In the limit of interest here, the vertical accel-
eration aẑ of the electron or ion T in the gravitational field
of the Earth S is given at PNO(2) by

a ẑ ¼ $g$ 2g"

mT ð !aTeffÞt̂ $
2g"

mS ð !aSeffÞt̂: (163)

As before, the PNO(3) version of this acceleration can be
frequency decomposed relative to the Sun-centered frame,
with the corresponding amplitudes depending on the
coefficients ð !aweffÞ! as given in Table IV.
In principle, a charged-particle interferometer can be

used for free-fall gravimeter tests of the type discussed in
Sec. VII B or for free-fall WEP tests as in Sec. VII D. A
free-fall gravimeter test is insensitive to ð !aweffÞT and has
only boost-suppressed signals from ð !aweffÞJ, so a substantial
improvement over the existing reach of charged-matter
interferometers would be required to achieve a sensitivity
compatible with perturbative consistency. In contrast, a
free-fall WEP test is directly sensitive to ð !aweffÞT but re-
quires a simultaneous measurement with two test bodies.
One option along these lines could be a direct comparison
with neutral matter via a falling corner cube or an atom
interferometer.
Another approach to gravitational tests with charged

matter is to study the motion of charged particles in a
vertical metallic drift tube. This setup is accompanied
by gravitationally induced electric forces caused by the
sagging of the tube [92], along with a variety of challeng-
ing systematics. An experiment of this type with electrons
[93] confirmed that the gravitational forces on the electrons
in the tube and on the electrons within the metal are

TABLE XI. Sensitivities for satellite-based WEP tests.

Coefficient MicroSCOPE GG STEP

"ð !aeþp$n
eff ÞT $ 1

3m
pð !ceþp$nÞTT {10$13 GeVg {10$15 GeVg {10$16 GeVg

"ð !aeþp$n
eff ÞX {10$9 GeVg {10$11 GeVg {10$12 GeVg

"ð !aeþp$n
eff ÞYþZ {10$9 GeVg {10$11 GeVg {10$12 GeVg

"ð !aeþp$n
eff ÞY {10$7 GeVg {10$9 GeVg {10$10 GeVg

"ð !aeþp$n
eff ÞZ {10$7 GeVg {10$9 GeVg {10$10 GeVg

ð !cnÞQ {10$13g {10$15g {10$16g
ð !cnÞðTJÞ {10$9g {10$11g {10$12g
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• SME coefficients:

Uncertainty on SME coefficients: 

these Lorentz-violating effects could be detected by the
GG apparatus that senses the test-body location. Notice
that the signals would be independent of gravity. They may
be detectable using sophisticated terrestrial dynamical-
balancing equipment, perhaps including that used in the
Galileo Galilei on the Ground (GGG) experiment [89]. The
investigation of these effects represents an interesting open
question for future work.

IX. EXOTIC GRAVITATIONAL TESTS

In this section, we offer a few remarks about some
gravitational searches for Lorentz violation using material
test bodies other than neutral bulk matter, neutral atoms, or
neutrons. These more exotic searches typically present
unique experimental challenges, but they could provide
access to combinations of coefficients for Lorentz violation
that are awkward or impossible to isolate and measure in
other searches discussed in this paper. Here, we briefly
consider tests with electrons and ions, studies with antihy-
drogen, and experiments using particles from the second
and third generation of the standard model.

A. Tests with electrons and ions

Measurements of the gravitational acceleration of
charged matter remain of definite theoretical interest be-
cause the WEP and other foundational aspects of gravity
are comparatively poorly tested in this regime. In this
subsection, we consider possible signals from studies of
charged electrons or ions. Given the experimental chal-
lenges of these tests and their limited attainable sensitiv-
ities, we restrict attention here to effects from ð !aweffÞ!,
setting other coefficients to zero for simplicity.

In the context of searches for Lorentz violation, gravi-
tational tests with charged matter offer unique access to the
coefficients ð !aweffÞ!. For example, measurements of this
kind can disentangle coefficients for Lorentz violation in
the proton and electron sectors. They can also detect
certain countershaded effects that are otherwise invisible.
In particular, some models have coefficients ð !aweffÞ! pro-
portional to electric charge, which would evade detection
in searches with neutral test bodies [11]. This possibility is
a natural consequence for theories in which the photon
modes are interpreted as Nambu-Goldstone bosons from

spontaneous Lorentz breaking and in which ð !aweffÞ!
remains physically observable, such as nonminimally
coupled bumblebee electrodynamics [14].
One candidate technique to measure gravitational effects

from the coefficients ð !aweffÞ! is charged-particle interfer-
ometry. Electron interferometry has been used to measure
the Sagnac effect at the 30% level [90], while ion inter-
ferometry is under investigation as a practical tool for
sensitive tests of Coulomb’s law [91]. In the present con-
text, electron or ion interferometry offers an interesting
alternative prospect to the free-fall tests with neutral matter
discussed in Sec. VII. For a given geometry, the observed
phase shift can be determined using the methods of
Sec. VII B. In the limit of interest here, the vertical accel-
eration aẑ of the electron or ion T in the gravitational field
of the Earth S is given at PNO(2) by

a ẑ ¼ $g$ 2g"

mT ð !aTeffÞt̂ $
2g"

mS ð !aSeffÞt̂: (163)

As before, the PNO(3) version of this acceleration can be
frequency decomposed relative to the Sun-centered frame,
with the corresponding amplitudes depending on the
coefficients ð !aweffÞ! as given in Table IV.
In principle, a charged-particle interferometer can be

used for free-fall gravimeter tests of the type discussed in
Sec. VII B or for free-fall WEP tests as in Sec. VII D. A
free-fall gravimeter test is insensitive to ð !aweffÞT and has
only boost-suppressed signals from ð !aweffÞJ, so a substantial
improvement over the existing reach of charged-matter
interferometers would be required to achieve a sensitivity
compatible with perturbative consistency. In contrast, a
free-fall WEP test is directly sensitive to ð !aweffÞT but re-
quires a simultaneous measurement with two test bodies.
One option along these lines could be a direct comparison
with neutral matter via a falling corner cube or an atom
interferometer.
Another approach to gravitational tests with charged

matter is to study the motion of charged particles in a
vertical metallic drift tube. This setup is accompanied
by gravitationally induced electric forces caused by the
sagging of the tube [92], along with a variety of challeng-
ing systematics. An experiment of this type with electrons
[93] confirmed that the gravitational forces on the electrons
in the tube and on the electrons within the metal are

TABLE XI. Sensitivities for satellite-based WEP tests.

Coefficient MicroSCOPE GG STEP

"ð !aeþp$n
eff ÞT $ 1

3m
pð !ceþp$nÞTT {10$13 GeVg {10$15 GeVg {10$16 GeVg

"ð !aeþp$n
eff ÞX {10$9 GeVg {10$11 GeVg {10$12 GeVg

"ð !aeþp$n
eff ÞYþZ {10$9 GeVg {10$11 GeVg {10$12 GeVg

"ð !aeþp$n
eff ÞY {10$7 GeVg {10$9 GeVg {10$10 GeVg

"ð !aeþp$n
eff ÞZ {10$7 GeVg {10$9 GeVg {10$10 GeVg

ð !cnÞQ {10$13g {10$15g {10$16g
ð !cnÞðTJÞ {10$9g {10$11g {10$12g
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10-2 GeV-1 

10-4 (Earth)
10-5 (satellite)

differential neutron-to-proton ratio (/ GeV): 
0.06 (/ GeV)

- boost factors (at first order)
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- species dependence:
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eff)µ + (āp
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(āe+p−n
eff )µ ≈ (āe
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• SME coefficients:

Uncertainty on SME coefficients: 

these Lorentz-violating effects could be detected by the
GG apparatus that senses the test-body location. Notice
that the signals would be independent of gravity. They may
be detectable using sophisticated terrestrial dynamical-
balancing equipment, perhaps including that used in the
Galileo Galilei on the Ground (GGG) experiment [89]. The
investigation of these effects represents an interesting open
question for future work.

IX. EXOTIC GRAVITATIONAL TESTS

In this section, we offer a few remarks about some
gravitational searches for Lorentz violation using material
test bodies other than neutral bulk matter, neutral atoms, or
neutrons. These more exotic searches typically present
unique experimental challenges, but they could provide
access to combinations of coefficients for Lorentz violation
that are awkward or impossible to isolate and measure in
other searches discussed in this paper. Here, we briefly
consider tests with electrons and ions, studies with antihy-
drogen, and experiments using particles from the second
and third generation of the standard model.

A. Tests with electrons and ions

Measurements of the gravitational acceleration of
charged matter remain of definite theoretical interest be-
cause the WEP and other foundational aspects of gravity
are comparatively poorly tested in this regime. In this
subsection, we consider possible signals from studies of
charged electrons or ions. Given the experimental chal-
lenges of these tests and their limited attainable sensitiv-
ities, we restrict attention here to effects from ð !aweffÞ!,
setting other coefficients to zero for simplicity.

In the context of searches for Lorentz violation, gravi-
tational tests with charged matter offer unique access to the
coefficients ð !aweffÞ!. For example, measurements of this
kind can disentangle coefficients for Lorentz violation in
the proton and electron sectors. They can also detect
certain countershaded effects that are otherwise invisible.
In particular, some models have coefficients ð !aweffÞ! pro-
portional to electric charge, which would evade detection
in searches with neutral test bodies [11]. This possibility is
a natural consequence for theories in which the photon
modes are interpreted as Nambu-Goldstone bosons from

spontaneous Lorentz breaking and in which ð !aweffÞ!
remains physically observable, such as nonminimally
coupled bumblebee electrodynamics [14].
One candidate technique to measure gravitational effects

from the coefficients ð !aweffÞ! is charged-particle interfer-
ometry. Electron interferometry has been used to measure
the Sagnac effect at the 30% level [90], while ion inter-
ferometry is under investigation as a practical tool for
sensitive tests of Coulomb’s law [91]. In the present con-
text, electron or ion interferometry offers an interesting
alternative prospect to the free-fall tests with neutral matter
discussed in Sec. VII. For a given geometry, the observed
phase shift can be determined using the methods of
Sec. VII B. In the limit of interest here, the vertical accel-
eration aẑ of the electron or ion T in the gravitational field
of the Earth S is given at PNO(2) by

a ẑ ¼ $g$ 2g"

mT ð !aTeffÞt̂ $
2g"

mS ð !aSeffÞt̂: (163)

As before, the PNO(3) version of this acceleration can be
frequency decomposed relative to the Sun-centered frame,
with the corresponding amplitudes depending on the
coefficients ð !aweffÞ! as given in Table IV.
In principle, a charged-particle interferometer can be

used for free-fall gravimeter tests of the type discussed in
Sec. VII B or for free-fall WEP tests as in Sec. VII D. A
free-fall gravimeter test is insensitive to ð !aweffÞT and has
only boost-suppressed signals from ð !aweffÞJ, so a substantial
improvement over the existing reach of charged-matter
interferometers would be required to achieve a sensitivity
compatible with perturbative consistency. In contrast, a
free-fall WEP test is directly sensitive to ð !aweffÞT but re-
quires a simultaneous measurement with two test bodies.
One option along these lines could be a direct comparison
with neutral matter via a falling corner cube or an atom
interferometer.
Another approach to gravitational tests with charged

matter is to study the motion of charged particles in a
vertical metallic drift tube. This setup is accompanied
by gravitationally induced electric forces caused by the
sagging of the tube [92], along with a variety of challeng-
ing systematics. An experiment of this type with electrons
[93] confirmed that the gravitational forces on the electrons
in the tube and on the electrons within the metal are

TABLE XI. Sensitivities for satellite-based WEP tests.

Coefficient MicroSCOPE GG STEP

"ð !aeþp$n
eff ÞT $ 1

3m
pð !ceþp$nÞTT {10$13 GeVg {10$15 GeVg {10$16 GeVg

"ð !aeþp$n
eff ÞX {10$9 GeVg {10$11 GeVg {10$12 GeVg

"ð !aeþp$n
eff ÞYþZ {10$9 GeVg {10$11 GeVg {10$12 GeVg

"ð !aeþp$n
eff ÞY {10$7 GeVg {10$9 GeVg {10$10 GeVg

"ð !aeþp$n
eff ÞZ {10$7 GeVg {10$9 GeVg {10$10 GeVg

ð !cnÞQ {10$13g {10$15g {10$16g
ð !cnÞðTJÞ {10$9g {10$11g {10$12g
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10-2 GeV-1 

10-4 (Earth)
10-5 (satellite)

differential neutron-to-proton ratio (/ GeV): 
0.06 (/ GeV)

- boost factors (at first order)
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µ + (āeff)p
µ − (āeff)n
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- species dependence:
scale factors in linear combination:

   prefactor on the order of 

Pt

Ti

#proton

#n
eu

tro
n

   Improvement by at least 3 orders of magnitude
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Test of Lorentz symmetry with MICROSCOPE MICROSCOPE Colloquium IV, Palaiseau, 16/11/2015C. Guerlin

•Real observable/ model: 

Establishing the signal arising from nonzero coefficients
for Lorentz violation requires the transformation from the
Sun-centered frame to a frame comoving with the satellite.
The satellite frame serves as the equivalent of the labora-
tory frame for terrestrial searches. We denote coordinates
in the satellite frame by x!̂.

Since the satellite orbit is inclined relative to the Earth-
centered frame, it is also useful to introduce an intermedi-
ate frame aligned with the satellite orbit and hence rotated
with respect to the Earth-centered frame. The intermediate
coordinates are denoted by x!

0
. The rotation transforma-

tion from xj
0
to x~j can be written as the matrix

R
~jk0

1 ¼
cos"2 " cos"1 sin"2 sin"1 sin"2

sin"2 cos"1 cos"2 " sin"1 cos"2

0 sin"1 cos"1

0
@

1
A (156)

using the angles "1 and "2 defined in Table IX.
The connection between the satellite coordinates and the

Earth-centered coordinates can be written

x~j ¼ R
~jk0

1 ðRk0 l̂
2 xl̂ þ xk

0
s Þ: (157)

Here, xk
0
s is the world line of the satellite in the intermediate

coordinate system. This world line can be parametrized as

xk
0
s ¼ ðr cosð!sT þ #1Þ; r sinð!sT þ #1Þ; 0Þ; (158)

where r is the magnitude of the Earth-satellite separation.
The satellite therefore orbits in the x0-y0 plane. Also, in

Eq. (157) the rotation Rk0 l̂
2 of the satellite is given by the

matrix

Rk0 l̂
2 ¼

cosð!rT þ #2Þ " sinð!rT þ #2Þ 0
sinð!rT þ #2Þ cosð!rT þ #2Þ 0

0 0 1

0
@

1
A: (159)

The axis of the satellite rotation is therefore along ẑ.
For our purposes, it suffices to obtain explicitly the local

differential acceleration !ax̂ of the test bodies in the x̂
direction. We have

!ax̂ & d2!x̂

dt̂2
¼ !ax̂tidal þ!ax̂LV þ . . . : (160)

The first term on the right-hand side of this expression is
the conventional Newton tidal term. It takes the form

!ax̂tidal ¼ "
!
3

2
!2

s cosð2!rT " 2!sT þ #2 " #1Þ

þ!2
r þ

1

2
!2

s

"
!x̂: (161)

The second term in Eq. (160) contains Lorentz-violating
contributions to the differential acceleration. It can be
written

!ax̂LV ¼ r!2
s

X

w;n

!
Nw

1

m1
" Nw

2

m2

"
ðPn sinð!nT þ $nÞ

þQn cosð!nT þ $nÞÞ: (162)

The amplitudes Pm, Qm and the corresponding phases
are provided in Table X. Finally, the ellipsis in Eq. (160)
represents higher-order general-relativistic corrections
and Lorentz-violating effects at the same post-Newtonian
order as !ax̂tidal. The latter are typically of lesser interest.
If desired, the differential acceleration !aŷ along ŷ can be
obtained by performing the transformation !rT ! !rT "
%=2 on Eq. (160).

B. MicroSCOPE and STEP

Within our idealized scenario, MicroSCOPE [84] and
STEP [85] can be analyzed in parallel. Each apparatus
consists of a pair of cylindrical test bodies made of differ-
ent material but having a common symmetry axis. The test
bodies are free to move along this axis. In satellite coor-
dinates, this direction lies along x̂ and is perpendicular both
to the direction of motion of the satellite and to the axis of
the satellite rotation.
One prosaic origin of relative motion of the test bodies

along the x̂ direction could be the influence of tidal forces
on a misalignment of the two centers of mass, which would
lead to the acceleration !ax̂tidal in Eq. (160). This can be
separated from the acceleration due to WEP violations
stemming from Lorentz-invariant sources, which enters
with the characteristic frequency !s "!r. Here, we are
interested in a WEP-violating acceleration !ax̂LV arising
from the coefficients ð "aweffÞ! and ð "cwÞ!& for Lorentz viola-
tion. This can be distinguished from both the above effects
through careful separation of the frequencies associated
with the amplitudes in Table X, except for the amplitude
Q!s"!r

.
The sensitivity goals of MicroSCOPE and STEP are

!a=r!2
s < 10"15 and !a=r!2

s < 10"18, respectively.
These sensitivities and the results in Table X can be used
to obtain rough estimates of the reach of these experiments
for studies of Lorentz violation. For this purpose, we take
the quantityNw

1 =m1 " Nw
2 =m2 appearing in Eq. (162) to be

of order 10"2 GeV"1, which is the best available value
with the Pt-Ir, Be, and Nb test bodies presently proposed
for STEP. Note that the bounds scale linearly with this
difference, so a careful choice of test-body material can
maximize sensitivity to Lorentz violation. Moreover,
combining results for different test materials can yield
additional independent sensitivities. Note also that the
experimental reach may vary with the choice of orbit.
For definiteness, we suppose the sines and cosines of "1

and "2 are of order one.
Our crude estimates for attainable sensitivities to

the moduli of ð "aweffÞ! and ð "cwÞ!& for MicroSCOPE and
STEP are presented in Table XI. In each row, the listed
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additional frequencies from off-centering, to be included in 
time series fit

•Fit for amplitudes and estimation of statistical 
uncertainty:

- characterize noise 
- fit e.g. by weighted least squares

10 MICROSCOPE – LA THUILE – MORIOND 2015  

FM instrument noise: axial (X SCI)
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µ , (āeff)w

µ )

= gn(c̄e+p−n
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•Estimation of systematic uncertainty: 
perturbations at 

different frequencies

186 É. Hardy et al.

Fig. 3 Projection rate of a perturbation on fEP as a function of the perturbation frequency, using different
windowing methods

Table 1 Special specifications
for some of the linear
combinations of forb and fspin
in spinning pointing and
projection rate in the worst case
combination of errors on the
determination of forb and the
realization of fspin

Frequency Global pattern
value

Specification Projection rate
of the singular
frequencies

forb 1.25 × 10−2 10−4 9.8 × 10−6

fspin − 2forb 1.25 × 10−2 3.3 × 10−4 3.6 × 10−5

2forb 1.25 × 10−2 2.5 × 10−4 2.3 × 10−5

fspin − forb 4.0 × 10−2 3.3 × 10−4 3.2 × 10−5

3forb 4.0 × 10−2 5 × 10−4 4.8 × 10−5

fspin 4.0 × 10−2 3.3 × 10−4 3.2 × 10−5

fspin + forb 1 1 1

fspin + 2forb 4.0 × 10−2 10−3 7.9 × 10−5

of the orbital and spin frequencies in rotating mode. These particular frequencies will be
called singular frequencies in the rest of the paper:

fd,sing = n1forb + n2fspin (27)

with n1 and n2 being integers and fspin being possibly null in the case of an inertial point-
ing. These perturbations have such an amplitude that the direct application of the global
pattern defined with the envelope curve of the projection rate (see Fig. 1) leads to projection
amplitudes too high to enable us to reach the accuracy objective for the EP test.

The analysis of the performances at these singular frequencies leads to define more re-
strictive specifications on the projection rates than those of the global pattern. Some of these
specifications are presented in Table 1, column 3.

The projection rates of these singular frequencies on fEP can be significantly reduced in
order to comply with the specifications if we make sure that they match with discrete Fourier
lines. In order to ensure this configuration for all those main perturbations, the analysis time
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called singular frequencies in the rest of the paper:
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with n1 and n2 being integers and fspin being possibly null in the case of an inertial point-
ing. These perturbations have such an amplitude that the direct application of the global
pattern defined with the envelope curve of the projection rate (see Fig. 1) leads to projection
amplitudes too high to enable us to reach the accuracy objective for the EP test.

The analysis of the performances at these singular frequencies leads to define more re-
strictive specifications on the projection rates than those of the global pattern. Some of these
specifications are presented in Table 1, column 3.
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• Estimate correlations between fitted times series amplitudes
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cstt

resolved for ~1 year data 

time step << orbital period OK for 0.25 s time step / 6000 s orbital period 

frequency difference        resolved if time span of data longer than one period
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(āe+p−n
eff )µ = (āe

eff)µ + (āp
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eff)µ + (āp
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resolved for ~1 orbit duration

- decorrelate LV signal from perturbations/tidal signal
- decorrelate LV signals between them: helps to decorrelate LV coefficients

allows to separate  X from Y+Z components of              coefficient 

• Take precession into account: additional splitting by annual frequency around each frequency 
helps  decorrelation of coefficients (heliosynchronous orbit) 
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~1.10-4 Hz

~6.10-4 Hz
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Questions on 2014 proposal:

1) signal to be analyzed: N2(c) differential acceleration

2) relative accuracy required for improvement of at least 3 orders of magnitude:
    10-15 at frequencies of interest (harmonics of spin, orbital, and annual frequencies)

3) most favorable experimental conditions: 
 - spin mode
 - continuous data series of several orbits
 - data sets spread over one year

SME search of LV with MICROSCOPE: possible improvement of several orders of 
magnitude on some coefficients
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Status and roadmap
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 SME model derived (U.S. team)

 SME simulation and data analysis of other experiments exist (Paris team)

 Simulation/data analysis to be adapted for MICROSCOPE (both groups)

 Evaluate systematics at LV signal frequencies (in coll. with MICROSCOPE team)

- collaboration with Q. Bailey in summer 2015
- publication of present best limits on target coefficients in summer 2015
- PhD thesis on SME tests a SYRTE

A. Hees, Q. Bailey, C. Guerlin, P. Wolf et al., Phys. Rev. D 92, 064049 (2015)



Thank you      

!
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Table S2. Maximal sensitivities for the matter sector

Coefficient Electron Proton Neutron

b̃X 10−31 GeV 10−31 GeV 10−33 GeV

b̃Y 10−31 GeV 10−31 GeV 10−33 GeV

b̃Z 10−29 GeV 10−28 GeV 10−29 GeV

b̃T 10−26 GeV – 10−26 GeV

b̃∗J , (J = X,Y, Z) 10−22 GeV – –

c̃− 10−19 GeV 10−24 GeV 10−28 GeV

c̃Q 10−17 GeV 10−21 GeV 10−10 GeV

c̃X 10−19 GeV 10−25 GeV 10−28 GeV

c̃Y 10−19 GeV 10−25 GeV 10−28 GeV

c̃Z 10−19 GeV 10−24 GeV 10−29 GeV

c̃TX 10−18 GeV 10−20 GeV 10−5 GeV

c̃TY 10−18 GeV 10−20 GeV 10−5 GeV

c̃TZ 10−20 GeV 10−20 GeV 10−5 GeV

c̃TT 10−18 GeV 10−11 GeV 10−11 GeV

d̃+ 10−27 GeV – 10−27 GeV

d̃− 10−26 GeV – 10−26 GeV

d̃Q 10−26 GeV – 10−26 GeV

d̃XY 10−26 GeV – 10−27 GeV

d̃Y Z 10−26 GeV – 10−26 GeV

d̃ZX 10−26 GeV – –

d̃X 10−22 GeV 10−27 GeV 10−28 GeV

d̃Y 10−22 GeV 10−27 GeV 10−28 GeV

d̃Z 10−19 GeV – –

H̃XT 10−26 GeV – 10−26 GeV

H̃Y T 10−26 GeV – 10−26 GeV

H̃ZT 10−26 GeV – 10−27 GeV

g̃T 10−27 GeV – 10−27 GeV

g̃c 10−26 GeV – 10−27 GeV

g̃Q – – –

g̃− – – –

g̃TJ , (J = X,Y, Z) – – –

g̃XY 10−17 GeV – –

g̃YX 10−17 GeV – –

g̃ZX 10−18 GeV – –

g̃XZ 10−17 GeV – –

g̃Y Z 10−17 GeV – –

g̃ZY 10−18 GeV – –

g̃DX 10−22 GeV 10−27 GeV 10−28 GeV

g̃DY 10−22 GeV 10−27 GeV 10−28 GeV

g̃DZ 10−22 GeV – –
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Table S5. Maximal sensitivities for the gravity sector

Coefficient Electron Proton Neutron

αaT 10−11 GeV 10−11 GeV 10−11 GeV

αaX 10−6 GeV 10−6 GeV 10−5 GeV

αaY 10−5 GeV 10−5 GeV 10−4 GeV

αaZ 10−5 GeV 10−5 GeV 10−4 GeV

αeT 10−8 10−11 10−11

αeX 10−3 10−6 10−5

αeY 10−2 10−5 10−4

αeZ 10−2 10−5 10−4

Coefficient Sensitivity

sXY 10−9

sXZ 10−9

sY Z 10−9

sXX − sY Y 10−9

sXX + sY Y − 2sZZ 10−7

sTT 10−2

sTX 10−6

sTY 10−7

sTZ 10−5

s̄BAI¼ s̄YZ−1.12×10−5s̄TX

þ5.43×10−6αðāeþp
eff ÞXþ5.96×10−6αðāneffÞX; ð23bÞ

with ðāeþp
eff ÞJ given by Eq. (6).

Therefore, the experiment from [20,21] is sensitive to the
last two combinations and not to s̄XZ and s̄YZ alone. The
results from [21] are presented in Table VII.
In our final analysis, we combine the three analysis with

both the s̄μν and ðāweffÞJ coefficients: (i) planetary eph-
emerides analysis given by Table II with the correlation
matrix from Table III [or equivalently the results from
Table II on the linear combinations given by Eqs. (15)],
(ii) LLR data analysis from [19] summarized in Table V
with linear combinations given by Eqs. (16a), (16b), and
(20) and (iii) atom interferometry gravimetry analysis from
[20,21] presented in Table VII with the linear combinations
given by Eq. (23). The (marginalized) results of this fit are
presented in Table VIII.
The resulting estimations do not show any significant

deviations from GR. The combinations of the three data
analyses allow one to estimate each of the coefficients

individually. The spatial part of s̄JK is completely deter-
mined by the combination of planetary ephemerides and
LLR data. The atom interferometry gravimetry is not
accurate enough to provide any significative improvement
on the uncertainty of these coefficients. With an improve-
ment of 2 orders of magnitude, the atom gravimetry data
would become significative to estimate the s̄JK coefficients.
On the other hand, the three data sets are required in order
to decorrelate the s̄TJ and the ðāweffÞJ coefficients. The
uncertainties on s̄TJ are much larger than those shown in
Table VI where the coefficients ðāweffÞJ have been neglected.
This reflects the fact that the individual coefficients are still
highly correlated.

V. DISCUSSION

First of all, the accuracy of the constraints on the SME
coefficients obtained in Table II (planetary orbital dynamics
alone) are of the same order of magnitude as the binary
pulsars [25] constraints on the SME coefficients with an
improvement of 1 order of magnitude on the coefficients
s̄YZ. Nevertheless, it is known that nonperturbative effects
(similar to those computed in [49]) may arise in binary
pulsar systems. The nonperturbative effects depend highly
on the fundamental theory (for example, see [50] for
nonpertubative calculations in Einstein-Aether theory or
in Hořava gravity). In general, the results from [25] are
effective constraints on the strong field version of the s̄μν

that may include nonperturbative strong field effects and
one should be careful when comparing strong field
tests and weak field tests as the one performed in
Sec. III. The results shown in Table IV improve the current
Solar System constraints [32] by 1 to 3 orders of magni-
tude. Furthermore, the analysis combining planetary orbital
dynamics and LLR from Table VI improves by 2 to 3 orders
of magnitude the previous results that combined LLR and
atom interferometry. This shows the high impact provided
by planetary ephemerides analysis.
As mentioned in Sec. III, our results show that the

estimated SME coefficients are highly correlated. The
correlations are due to the similarity of the orbital planes
of all the planets. Therefore, one way to improve the results
by reducing the correlations is to use bodies with different
orbital planes like e.g. asteroids. This can be achieved for
example with Gaia observations similar to what is proposed
in [51].
The constraints obtained in Sec. III are mainly due to the

internal planets. For instance, Jupiter has absolutely no
influence on the results shown in Table II. This is a
consequence of its not so well-known orbit. An improve-
ment by a factor 10 on the knowledge of Jupiter’s orbit is
required for that planet to play a significant role in this
analysis. Therefore, the improvement of Jupiter’s trajectory
expected from the analysis of Juno’s radioscience and very
long baseline interferometry data [52] may improve the

TABLE VII. Estimations of the SME coefficients derived from
atom interferometry gravimetry by [20,21].

SME linear combination Estimation

s̄XX − s̄YY ð4.4% 11Þ × 10−9

s̄XY ð0.2% 3.9Þ × 10−9

s̄AAI ð−2.6% 4.4Þ × 10−9

s̄BAI ð−0.3% 4.5Þ × 10−9

s̄TX ð−3.1% 5.1Þ × 10−5

s̄TY ð0.1% 5.4Þ × 10−5

s̄TZ ð1.4% 6.6Þ × 10−5

TABLE VIII. Estimated mean and 1σ uncertainty of the SME
coefficients obtained with a fit combining results from Sec. III,
LLR data analysis from [19] and atom interferometry gravimetry
experiment [20,21].

SME coefficients Estimation

s̄XX − s̄YY ð9.6% 5.6Þ × 10−11

s̄Q ¼ s̄XX þ s̄YY − 2s̄ZZ ð1.6% 0.78Þ × 10−10

s̄XY ð6.5% 3.2Þ × 10−11

s̄XZ ð2.0% 1.0Þ × 10−11

s̄YZ ð4.1% 5.0Þ × 10−12

s̄TX ð−7.4% 8.7Þ × 10−6

s̄TY ð−0.8% 2.5Þ × 10−5

s̄TZ ð0.8% 5.8Þ × 10−5

αðāeeffÞX þ αðāpeffÞX ð−7.6% 9.0Þ × 10−6 GeV=c2

αðāeeffÞY þ αðāpeffÞY ð−6.2% 9.5Þ × 10−5 GeV=c2

αðāeeffÞZ þ αðāpeffÞZ ð1.3% 2.2Þ × 10−4 GeV=c2

αðāneffÞX ð−5.4% 6.3Þ × 10−6 GeV=c2

αðāneffÞY ð4.8% 8.2Þ × 10−4 GeV=c2

αðāneffÞZ ð−1.1% 1.9Þ × 10−3 GeV=c2
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these Lorentz-violating effects could be detected by the
GG apparatus that senses the test-body location. Notice
that the signals would be independent of gravity. They may
be detectable using sophisticated terrestrial dynamical-
balancing equipment, perhaps including that used in the
Galileo Galilei on the Ground (GGG) experiment [89]. The
investigation of these effects represents an interesting open
question for future work.

IX. EXOTIC GRAVITATIONAL TESTS

In this section, we offer a few remarks about some
gravitational searches for Lorentz violation using material
test bodies other than neutral bulk matter, neutral atoms, or
neutrons. These more exotic searches typically present
unique experimental challenges, but they could provide
access to combinations of coefficients for Lorentz violation
that are awkward or impossible to isolate and measure in
other searches discussed in this paper. Here, we briefly
consider tests with electrons and ions, studies with antihy-
drogen, and experiments using particles from the second
and third generation of the standard model.

A. Tests with electrons and ions

Measurements of the gravitational acceleration of
charged matter remain of definite theoretical interest be-
cause the WEP and other foundational aspects of gravity
are comparatively poorly tested in this regime. In this
subsection, we consider possible signals from studies of
charged electrons or ions. Given the experimental chal-
lenges of these tests and their limited attainable sensitiv-
ities, we restrict attention here to effects from ð !aweffÞ!,
setting other coefficients to zero for simplicity.

In the context of searches for Lorentz violation, gravi-
tational tests with charged matter offer unique access to the
coefficients ð !aweffÞ!. For example, measurements of this
kind can disentangle coefficients for Lorentz violation in
the proton and electron sectors. They can also detect
certain countershaded effects that are otherwise invisible.
In particular, some models have coefficients ð !aweffÞ! pro-
portional to electric charge, which would evade detection
in searches with neutral test bodies [11]. This possibility is
a natural consequence for theories in which the photon
modes are interpreted as Nambu-Goldstone bosons from

spontaneous Lorentz breaking and in which ð !aweffÞ!
remains physically observable, such as nonminimally
coupled bumblebee electrodynamics [14].
One candidate technique to measure gravitational effects

from the coefficients ð !aweffÞ! is charged-particle interfer-
ometry. Electron interferometry has been used to measure
the Sagnac effect at the 30% level [90], while ion inter-
ferometry is under investigation as a practical tool for
sensitive tests of Coulomb’s law [91]. In the present con-
text, electron or ion interferometry offers an interesting
alternative prospect to the free-fall tests with neutral matter
discussed in Sec. VII. For a given geometry, the observed
phase shift can be determined using the methods of
Sec. VII B. In the limit of interest here, the vertical accel-
eration aẑ of the electron or ion T in the gravitational field
of the Earth S is given at PNO(2) by

a ẑ ¼ $g$ 2g"

mT ð !aTeffÞt̂ $
2g"

mS ð !aSeffÞt̂: (163)

As before, the PNO(3) version of this acceleration can be
frequency decomposed relative to the Sun-centered frame,
with the corresponding amplitudes depending on the
coefficients ð !aweffÞ! as given in Table IV.
In principle, a charged-particle interferometer can be

used for free-fall gravimeter tests of the type discussed in
Sec. VII B or for free-fall WEP tests as in Sec. VII D. A
free-fall gravimeter test is insensitive to ð !aweffÞT and has
only boost-suppressed signals from ð !aweffÞJ, so a substantial
improvement over the existing reach of charged-matter
interferometers would be required to achieve a sensitivity
compatible with perturbative consistency. In contrast, a
free-fall WEP test is directly sensitive to ð !aweffÞT but re-
quires a simultaneous measurement with two test bodies.
One option along these lines could be a direct comparison
with neutral matter via a falling corner cube or an atom
interferometer.
Another approach to gravitational tests with charged

matter is to study the motion of charged particles in a
vertical metallic drift tube. This setup is accompanied
by gravitationally induced electric forces caused by the
sagging of the tube [92], along with a variety of challeng-
ing systematics. An experiment of this type with electrons
[93] confirmed that the gravitational forces on the electrons
in the tube and on the electrons within the metal are

TABLE XI. Sensitivities for satellite-based WEP tests.

Coefficient MicroSCOPE GG STEP

"ð !aeþp$n
eff ÞT $ 1

3m
pð !ceþp$nÞTT {10$13 GeVg {10$15 GeVg {10$16 GeVg

"ð !aeþp$n
eff ÞX {10$9 GeVg {10$11 GeVg {10$12 GeVg

"ð !aeþp$n
eff ÞYþZ {10$9 GeVg {10$11 GeVg {10$12 GeVg

"ð !aeþp$n
eff ÞY {10$7 GeVg {10$9 GeVg {10$10 GeVg

"ð !aeþp$n
eff ÞZ {10$7 GeVg {10$9 GeVg {10$10 GeVg

ð !cnÞQ {10$13g {10$15g {10$16g
ð !cnÞðTJÞ {10$9g {10$11g {10$12g
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from V.A. Kostelecky and N. Russel, 
arXiv 0801.0285 (2015)
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The coefficients !s!" lie in the pure-gravity sector of the

minimal SME and therefore can be measured only in the
gravitational context. The corresponding post-Newtonian
corrections to the gravitational field are known [7,56].
Constraints on most of the nine independent components
of !s!" have been obtained using a variety of techniques,

including among others perihelion-precession studies,
lunar laser ranging, atom-interferometer gravimetry,
and laboratory and space-based experiments [4–7]. All
these analyses disregard matter effects. In this work, we
show that Lorentz violation in the matter sector can
contribute in different ways to signals involving the coef-
ficients !s!".

For all the coefficients ð !aweffÞ!, ð !cwÞ!", !s!", the effects of

interest here involve gravitational couplings to matter. It is
therefore reasonable to expect that the best sensitivities to
Lorentz violation are associated with couplings to domi-
nant gravitational effects. This suggests that tests with high
sensitivity to Newton gravity are of particular interest. As
described in Sec. IVB3, the flavor dependence of the
coefficients for Lorentz violation implies that WEP tests
also lie in this category.

Many of the signals sought in gravity tests require
ancillary measurements of time and distance. These typi-
cally involve matter in some form, and they may introduce
additional Lorentz-violating effects beyond those compris-
ing the direct signal of interest. However, most of these
additional effects are negligible in the present context
because the corresponding coefficients are tightly con-
strained via tests in Minkowski spacetime [2], whereas
sensitivities in gravitational tests are typically substantially
reduced by the weak gravitational field. Among the coef-
ficients of interest in the present work, this issue is relevant
only to ð !cwÞ!" because ð !aweffÞ! and !s!" are unobservable in

Minkowski-spacetime tests and because we adopt the co-
ordinate choice (23) making unobservable the photon-
sector coefficients ð !kFÞ#!#". Among the coefficients

ð !cwÞ!" for ordinary matter, the neutron-sector coefficients

ð !cnÞ!" are the least well constrained at present. Their

effects may therefore be important for certain tests, in
which case a detailed analysis of the measurement method
may be necessary.

Another consideration relevant for identifying sensitiv-
ities in tests with atoms or bulk matter is the role of the
contributions from binding energy. In some cases, account-
ing for these contributions can disentangle effects from
different coefficients, thereby producing additional inde-
pendent sensitivities. This can occur when coefficients
from two or more sectors are involved, either directly
within a WEP test or indirectly via comparison of results
obtained for different bodies. In the remainder of this
subsection, we discuss this possibility for the coefficients
ð !aweffÞ! and ð !cwÞ!" in turn.

Consider first combinations of the coefficients ð !aweffÞ!.
Following the discussion in Sec. IVA2, a body B has an
effective coefficient ðaBeffÞ! given by Eqs. (73) and (75).
The dimensionless quantity relevant for a test is
ð !aBeffÞ!=mB, and comparisons involving two bodies there-
fore appear as the difference of two quantities of this
form. For two neutral bodies involving bound electrons,
protons, and neutrons, this difference can be expanded as
follows:

X

w

!
Nw

1

m1
# Nw

2

m2

"
ð !aweffÞ! ¼ Np

1N
n
2 # Nn

1N
p
2

m1m2
mnð !aeþp#n

eff Þ!

þ Np
1m

0
2 # Np

2m
0
1

m1m2
ð !aeþp

eff Þ!

þ Nn
1m

0
2 # Nn

2m
0
1

m1m2
ð !aneffÞ!: (122)

Here, the numbers of particles of species w for the two
bodies are Nw

1 , N
w
2 , and m0

1, m
0
2 are the binding-energy

contributions to the masses m1, m2 of the two bodies, as
defined in Eq. (71). Also, we define

ð !aeþp
eff Þ! ¼ ð !aeeffÞ! þ ð !apeffÞ!;

ð !aeþp#n
eff Þ! ¼ ð !aeþp

eff Þ! #me þmp

mn ð !aneffÞ!:
(123)

When the contributions from binding energy are neglected
in Eq. (122), the linear combination ð !aeþp#n

eff Þ! of coeffi-
cients becomes the sole observable involving ð !aweffÞ! in a
comparison of two bodies, with the effect scaled by their
difference in species content. However, incorporating the
binding energy in the analysis introduces the last two terms
in Eq. (122), revealing that the effects of ð !aeeffÞ! þ ð !apeffÞ!
and ð !aneffÞ! vary differently with the content of the bodies.
This allows the possibility of independent measurements of
ð !aeeffÞ! þ ð !apeffÞ! and ð !aneffÞ!. Note that the sensitivity of
such measurements is typically an order of magnitude less
than that of measurements of ð !aeþp#n

eff Þ! due to the appear-
ance of ratios of the form m0=m.
Next, consider combinations of the coefficients ð !cwÞ!".

For a body B, the effective coefficient ðcBÞ!" is a dimen-
sionless quantity given by Eq. (74). As discussed in
Sec. IVA2, nonzero Lorentz-violating contributions from
the binding energy given by the coefficients ðc0BÞ!" are
expected to exist, along with the usual binding-energy
contributions m0 to the body mass. It turns out that these
Lorentz-violating contributions impede the use of binding
energy to extract additional independent sensitivities to
combinations of the coefficients ð !cwÞ!". To see this, con-
sider two neutral bodies as before, and expand the analogue
of Eq. (122) to get
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9 independent coefficients

4 independent coefficients
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µ + (āeff)p
µ − (āeff)n
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Figure 2. In-orbit accelerations measured by the STAR instrument at the centre of mass of the CHAMP satellite;
along local vertical direction (upper), along satellite velocity vector (atmospheric drag) (middle) and normal to the

orbit plane (lower); day 295, year 2000, about 2 orbit duration.

components related to new possible interactions [5], or to already performed EP tests [18]. Platinum and
titanium alloys have been selected, with mass ranging from 0.4 kg up to 1.7 kg (see table 1). More couples
of masses and materials are obviously of great interest but are not compatible with the integration of more
instruments on board the microsatellite. The success of the mission will certainly open the door to further
missions.

Table 1. Average values for typical elements and for selected platinum and titanium: proton, neutron, lepton numbers,
respectively Z , N , L; new interaction, in violation to EP, could be determined by some generalised charge depending

on these atomic characteristics.
Elements Z µ (N + Z)/µ L/µ (N −Z)/µ

Hydrogen 1 1.00149 1.00000 0.99985 −0.99970

Beryllium 4 8.94221 1.00646 0.44732 0.11183

Carbon 6 11.91785 1.00782 0.50345 0.00093

Silicon 14 27.86754 1.00866 0.50238 0.00390

Titanium 22 47.50717 1.00891 0.46309 0.08273

Platinum 78 1193.56593 1.00801 0.40296 0.20208

1275

p p+n
48

n
26

193 115

n/n+p p/n+p

0.54 0.46
0.6 0.4

n/p

1.18
1.47

Pt

Ti
Difference: 0.06

Establishing the signal arising from nonzero coefficients
for Lorentz violation requires the transformation from the
Sun-centered frame to a frame comoving with the satellite.
The satellite frame serves as the equivalent of the labora-
tory frame for terrestrial searches. We denote coordinates
in the satellite frame by x!̂.

Since the satellite orbit is inclined relative to the Earth-
centered frame, it is also useful to introduce an intermedi-
ate frame aligned with the satellite orbit and hence rotated
with respect to the Earth-centered frame. The intermediate
coordinates are denoted by x!

0
. The rotation transforma-

tion from xj
0
to x~j can be written as the matrix

R
~jk0

1 ¼
cos"2 " cos"1 sin"2 sin"1 sin"2

sin"2 cos"1 cos"2 " sin"1 cos"2

0 sin"1 cos"1

0
@

1
A (156)

using the angles "1 and "2 defined in Table IX.
The connection between the satellite coordinates and the

Earth-centered coordinates can be written

x~j ¼ R
~jk0

1 ðRk0 l̂
2 xl̂ þ xk

0
s Þ: (157)

Here, xk
0
s is the world line of the satellite in the intermediate

coordinate system. This world line can be parametrized as

xk
0
s ¼ ðr cosð!sT þ #1Þ; r sinð!sT þ #1Þ; 0Þ; (158)

where r is the magnitude of the Earth-satellite separation.
The satellite therefore orbits in the x0-y0 plane. Also, in

Eq. (157) the rotation Rk0 l̂
2 of the satellite is given by the

matrix

Rk0 l̂
2 ¼

cosð!rT þ #2Þ " sinð!rT þ #2Þ 0
sinð!rT þ #2Þ cosð!rT þ #2Þ 0

0 0 1

0
@

1
A: (159)

The axis of the satellite rotation is therefore along ẑ.
For our purposes, it suffices to obtain explicitly the local

differential acceleration !ax̂ of the test bodies in the x̂
direction. We have

!ax̂ & d2!x̂

dt̂2
¼ !ax̂tidal þ!ax̂LV þ . . . : (160)

The first term on the right-hand side of this expression is
the conventional Newton tidal term. It takes the form

!ax̂tidal ¼ "
!
3

2
!2

s cosð2!rT " 2!sT þ #2 " #1Þ

þ!2
r þ

1

2
!2

s

"
!x̂: (161)

The second term in Eq. (160) contains Lorentz-violating
contributions to the differential acceleration. It can be
written

!ax̂LV ¼ r!2
s

X

w;n

!
Nw

1

m1
" Nw

2

m2

"
ðPn sinð!nT þ $nÞ

þQn cosð!nT þ $nÞÞ: (162)

The amplitudes Pm, Qm and the corresponding phases
are provided in Table X. Finally, the ellipsis in Eq. (160)
represents higher-order general-relativistic corrections
and Lorentz-violating effects at the same post-Newtonian
order as !ax̂tidal. The latter are typically of lesser interest.
If desired, the differential acceleration !aŷ along ŷ can be
obtained by performing the transformation !rT ! !rT "
%=2 on Eq. (160).

B. MicroSCOPE and STEP

Within our idealized scenario, MicroSCOPE [84] and
STEP [85] can be analyzed in parallel. Each apparatus
consists of a pair of cylindrical test bodies made of differ-
ent material but having a common symmetry axis. The test
bodies are free to move along this axis. In satellite coor-
dinates, this direction lies along x̂ and is perpendicular both
to the direction of motion of the satellite and to the axis of
the satellite rotation.
One prosaic origin of relative motion of the test bodies

along the x̂ direction could be the influence of tidal forces
on a misalignment of the two centers of mass, which would
lead to the acceleration !ax̂tidal in Eq. (160). This can be
separated from the acceleration due to WEP violations
stemming from Lorentz-invariant sources, which enters
with the characteristic frequency !s "!r. Here, we are
interested in a WEP-violating acceleration !ax̂LV arising
from the coefficients ð "aweffÞ! and ð "cwÞ!& for Lorentz viola-
tion. This can be distinguished from both the above effects
through careful separation of the frequencies associated
with the amplitudes in Table X, except for the amplitude
Q!s"!r

.
The sensitivity goals of MicroSCOPE and STEP are

!a=r!2
s < 10"15 and !a=r!2

s < 10"18, respectively.
These sensitivities and the results in Table X can be used
to obtain rough estimates of the reach of these experiments
for studies of Lorentz violation. For this purpose, we take
the quantityNw

1 =m1 " Nw
2 =m2 appearing in Eq. (162) to be

of order 10"2 GeV"1, which is the best available value
with the Pt-Ir, Be, and Nb test bodies presently proposed
for STEP. Note that the bounds scale linearly with this
difference, so a careful choice of test-body material can
maximize sensitivity to Lorentz violation. Moreover,
combining results for different test materials can yield
additional independent sensitivities. Note also that the
experimental reach may vary with the choice of orbit.
For definiteness, we suppose the sines and cosines of "1

and "2 are of order one.
Our crude estimates for attainable sensitivities to

the moduli of ð "aweffÞ! and ð "cwÞ!& for MicroSCOPE and
STEP are presented in Table XI. In each row, the listed
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sensitivities are obtained under the assumption that all
coefficients vanish except those appearing in the first entry.
The key factor underlying the difference in reach for the
various coefficient combinations is the boost entering
the relevant amplitude in Table X. Amplitudes containing
V! are suppressed by roughly 10"4, while those containing
r!s are suppressed by about 10"5. As before, the braces
indicate the estimated sensitivities involve data from future
tests.

C. Galileo Galilei

Certain design features of GG [86] differ from those of
MicroSCOPE and STEP in ways that are significant for
studies of Lorentz violation. Although GG also uses coax-
ial cylindrical test bodies, it is sensitive to accelerations in
the plane perpendicular to the axis of the cylinders. Also,
the cylinders are rotated about their axis at a comparatively
high frequency of about 2 Hz.

In applying the generic analysis of Sec. VIII A to GG, it
is convenient to take the cylinder axes to lie along ẑ. The
experiment is then sensitive to accelerations in the x̂-ŷ
plane. The differential acceleration !ax̂ along x̂ is given
in Eq. (160), while !aŷ can be obtained by adjusting the
phase !2.

The sensitivity goal of GG is !a=r!2
s < 10"17. In

Table XI, we present rough estimates of the corresponding
reach for measurements of the coefficients ð "aweffÞ" and

ð "cwÞ"# for Lorentz violation, obtained using the result

(162). The values for GG in the table are based on the
same assumptions as those discussed above for
MicroSCOPE and STEP. This includes the material-
dependent factor, with the proposed materials for the GG
test bodies being Be and Cu. The boost factors leading to
the varying sensitivities for GG listed in the table are also
of the same order of magnitude as for the other satellite
experiments.
We remark in passing that the comparatively high rota-

tion rate for the GG cylinders could introduce additional
Lorentz-violating effects. Typically, the presence of non-
zero ð "cwÞ"# introduces modifications to the effective mo-

ment of inertia of a body. This can affect the dynamical
balance of the system, which can lead to observable sig-
nals. For example, potential effects of this type on the
timing of pulsar signals have been used to constrain
some combinations of ð "cnÞ"# [88]. In the present context,

the observable signals could include a material-dependent
Lorentz-violating wobble varying at the satellite frequency
and at the Earth’s orbital frequency. It is conceivable that

TABLE X. Amplitudes for satellite-based WEP tests.

Amplitude Phase
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Establishing the signal arising from nonzero coefficients
for Lorentz violation requires the transformation from the
Sun-centered frame to a frame comoving with the satellite.
The satellite frame serves as the equivalent of the labora-
tory frame for terrestrial searches. We denote coordinates
in the satellite frame by x!̂.

Since the satellite orbit is inclined relative to the Earth-
centered frame, it is also useful to introduce an intermedi-
ate frame aligned with the satellite orbit and hence rotated
with respect to the Earth-centered frame. The intermediate
coordinates are denoted by x!

0
. The rotation transforma-

tion from xj
0
to x~j can be written as the matrix

R
~jk0

1 ¼
cos"2 " cos"1 sin"2 sin"1 sin"2

sin"2 cos"1 cos"2 " sin"1 cos"2

0 sin"1 cos"1

0
@

1
A (156)

using the angles "1 and "2 defined in Table IX.
The connection between the satellite coordinates and the

Earth-centered coordinates can be written

x~j ¼ R
~jk0

1 ðRk0 l̂
2 xl̂ þ xk

0
s Þ: (157)

Here, xk
0
s is the world line of the satellite in the intermediate

coordinate system. This world line can be parametrized as

xk
0
s ¼ ðr cosð!sT þ #1Þ; r sinð!sT þ #1Þ; 0Þ; (158)

where r is the magnitude of the Earth-satellite separation.
The satellite therefore orbits in the x0-y0 plane. Also, in

Eq. (157) the rotation Rk0 l̂
2 of the satellite is given by the

matrix

Rk0 l̂
2 ¼

cosð!rT þ #2Þ " sinð!rT þ #2Þ 0
sinð!rT þ #2Þ cosð!rT þ #2Þ 0

0 0 1

0
@

1
A: (159)

The axis of the satellite rotation is therefore along ẑ.
For our purposes, it suffices to obtain explicitly the local

differential acceleration !ax̂ of the test bodies in the x̂
direction. We have

!ax̂ & d2!x̂

dt̂2
¼ !ax̂tidal þ!ax̂LV þ . . . : (160)

The first term on the right-hand side of this expression is
the conventional Newton tidal term. It takes the form

!ax̂tidal ¼ "
!
3

2
!2

s cosð2!rT " 2!sT þ #2 " #1Þ

þ!2
r þ

1

2
!2

s

"
!x̂: (161)

The second term in Eq. (160) contains Lorentz-violating
contributions to the differential acceleration. It can be
written

!ax̂LV ¼ r!2
s

X

w;n

!
Nw

1

m1
" Nw

2

m2

"
ðPn sinð!nT þ $nÞ

þQn cosð!nT þ $nÞÞ: (162)

The amplitudes Pm, Qm and the corresponding phases
are provided in Table X. Finally, the ellipsis in Eq. (160)
represents higher-order general-relativistic corrections
and Lorentz-violating effects at the same post-Newtonian
order as !ax̂tidal. The latter are typically of lesser interest.
If desired, the differential acceleration !aŷ along ŷ can be
obtained by performing the transformation !rT ! !rT "
%=2 on Eq. (160).

B. MicroSCOPE and STEP

Within our idealized scenario, MicroSCOPE [84] and
STEP [85] can be analyzed in parallel. Each apparatus
consists of a pair of cylindrical test bodies made of differ-
ent material but having a common symmetry axis. The test
bodies are free to move along this axis. In satellite coor-
dinates, this direction lies along x̂ and is perpendicular both
to the direction of motion of the satellite and to the axis of
the satellite rotation.
One prosaic origin of relative motion of the test bodies

along the x̂ direction could be the influence of tidal forces
on a misalignment of the two centers of mass, which would
lead to the acceleration !ax̂tidal in Eq. (160). This can be
separated from the acceleration due to WEP violations
stemming from Lorentz-invariant sources, which enters
with the characteristic frequency !s "!r. Here, we are
interested in a WEP-violating acceleration !ax̂LV arising
from the coefficients ð "aweffÞ! and ð "cwÞ!& for Lorentz viola-
tion. This can be distinguished from both the above effects
through careful separation of the frequencies associated
with the amplitudes in Table X, except for the amplitude
Q!s"!r

.
The sensitivity goals of MicroSCOPE and STEP are

!a=r!2
s < 10"15 and !a=r!2

s < 10"18, respectively.
These sensitivities and the results in Table X can be used
to obtain rough estimates of the reach of these experiments
for studies of Lorentz violation. For this purpose, we take
the quantityNw

1 =m1 " Nw
2 =m2 appearing in Eq. (162) to be

of order 10"2 GeV"1, which is the best available value
with the Pt-Ir, Be, and Nb test bodies presently proposed
for STEP. Note that the bounds scale linearly with this
difference, so a careful choice of test-body material can
maximize sensitivity to Lorentz violation. Moreover,
combining results for different test materials can yield
additional independent sensitivities. Note also that the
experimental reach may vary with the choice of orbit.
For definiteness, we suppose the sines and cosines of "1

and "2 are of order one.
Our crude estimates for attainable sensitivities to

the moduli of ð "aweffÞ! and ð "cwÞ!& for MicroSCOPE and
STEP are presented in Table XI. In each row, the listed
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with

j!ð !aeþp
eff ÞTj & 10$10 GeV; j!ð !aneffÞTj & 10$10 GeV;

(153)

valid for ð !cwÞ"# ¼ 0.
If instead nonzero coefficients ð !cwÞ"# are present, then

we obtain the estimated bound
!!!!!!!!!ð !a

eþp$n
eff ÞT $ 1

3
mpð !ceþp$nÞTT $ 1

6
mnð !cnÞQ

!!!!!!!!
& 10$11 GeV: (154)

The contributions due to the spatial neutron coefficient
ð !cnÞQ cannot be disentangled from those due to the tem-
poral components at this order in the analysis. However,
this separation becomes feasible when the result (154) is
combined with the limit achieved via free-fall WEP tests
given in row 2 of Table VI. We thereby obtain the con-
straints
!!!!!!!!!ð !a

eþp$n
eff ÞT $

1

3
mpð !ceþp$nÞTT

!!!!!!!!& 10$8 GeV;

jð !cnÞQj & 10$8:

(155)

As discussed following Eq. (125), the possibility of
ð !cwÞ"#-type Lorentz-violating effects in the binding
energy impedes its direct use in extracting independent
sensitivities to j!ð !aeþp

eff ÞT $ 1
3m

pð !ceþpÞTTj and j!ð !aneffÞT $
1
3m

pð !cnÞTTj.
In addition to the constraints (153)–(155), other new

bounds could be placed on the moduli of certain coeffi-
cients for Lorentz violation by reanalyzing the time depen-
dence of the data obtained in the experiments of
Refs. [33,79] using the result (152). Crude estimates of
these sensitivities are given in Table VIII. These are
obtained disregarding binding-energy considerations but
making the strong assumption that all relevant frequencies
in Table VII can be studied in the data. Allowing for
binding-energy effects could yield independent sensitiv-
ities to the neutron coefficients and to a combination of
proton and electron coefficients, both reduced by roughly a
factor of 10.

VIII. SATELLITE-BASED WEP TESTS

Space-based platforms offer certain advantages in
tests of gravity [82] and searches for Lorentz violation
[83]. The long free-fall times that may be attainable on a

drag-free spacecraft make satellite-based WEP tests par-
ticularly attractive. Several proposals are in an advanced
stage of development, including the Micro-Satellite à
traı̂née Compensée pour l’Observation du Principe
d’Equivalence (MicroSCOPE) [84], the Satellite Test of
the Equivalence Principle (STEP) [85], and the Galileo
Galilei (GG) mission [86]. A WEP reach similar to that
of STEP has also been suggested for the Grand Unification
and Gravity Explorer (GaUGE) mission [87].
The basic idea underlying these missions is to monitor

the relative motion of test bodies made of different
materials as they orbit the Earth in a satellite. In the
presence of nonzero coefficients for Lorentz violation
ð !aweffÞ" and ð !cwÞ"#, the orbits of the test bodies become
material dependent. In this section, we determine the re-
sulting apparent WEP violations and then obtain crude
estimates of the sensitivities to ð !aweffÞ" and ð !cwÞ"# attain-
able in MicroSCOPE, STEP, and GG.

A. Theory

The basic observable for a satellite-based WEP test is
the differential local acceleration between the test bodies.
The typical design goal is to achieve excellent sensitivity to
one or two components of this acceleration. For present
purposes, we can idealize the situation as a pair of test
bodies aboard a satellite traveling in a circular orbit. In
what follows, we allow for the possibility that the test
bodies are also rotating about an axis perpendicular both
to the direction of motion of the satellite and to the direc-
tion of acceleration sensitivity.
Some notation relevant for our analysis of satellite-based

WEP tests is summarized in Table IX. Paralleling the
analysis of terrestrial experiments in Sec. VII A, it is
convenient to introduce an Earth-centered frame with co-
ordinates x ~" ¼ ð~t; ~x; ~y; ~zÞ, chosen so that ~t ¼ T and so that
the spatial components match those of the Sun-centered
frame at leading post-Newtonian order. The Earth-centered
coordinates can be related to the Sun-centered ones as
discussed in Sec. VIA. The angles $1, $2 in the table are
defined relative to the basis vectors of the Earth-centered
frame. The notation for properties of the test masses 1 and
2 follows that of Sec. VI B.

TABLE VIII. Sensitivities for torsion-pendulum tests.

Coefficient Sensitivity

!cnðTJÞ [10$7]
!ð !aeþp$n

eff ÞX [10$8 GeV]
!ð !aeþp$n

eff ÞYþZ [10$7 GeV]
!ð !aeþp$n

eff ÞY [10$8 GeV]
!ð !aeþp$n

eff ÞZ [10$7 GeV]

TABLE IX. Notation for satellite-based WEP tests.

Quantity Definition

R& Mean Earth radius
V& Mean Earth orbital speed
rJ Earth-satellite separation
!s Satellite orbital frequency
!r Satellite rotational frequency
$1 Inclination of satellite orbit
$2 Longitude of satellite-orbit node
%1 Phase fixing satellite location at T ¼ 0
%2 Phase fixing satellite orientation at T ¼ 0
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Collected results-> Data Tables: Rev. Mod. Phys.  2011, arxiv: 0801.0287v8 (2015 edition) 

•  atom-interferometer tests (Mueller et al) 

•  lunar laser ranging (Battat et al) 

•  pulsar-timing observations (Shao) 

•  short-range gravity tests (Long et al ) 

•  trapped particle tests (Dehmelt, Gabrielse, …) 

•  spin-polarized matter tests (EotWash) 

•  clock-comparison tests (Gibble, Hunter, Romalis, Hedges, Walsworth, Wolf, …) 

•  tests with resonant cavities (Lipa, Mueller, Peters, Schiller, Tobar, Wolf, Bize, …) 

•  neutrino oscillations (LSND, Minos, Super K, …) 

•  muon tests (Hughes, BNL g-2) 

•  meson oscillations (BABAR, BELLE, DELPHI, FOCUS, KTeV, OPAL, …) 

•  astroparticle physics  (Altschul, ...) 

•  cosmological birefringence (Mewes, ...) 
•  … 



PPN and SME
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Origin of Lorentz violating tensors
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SME equations of motion in «lab» frame
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to the centrifugal acceleration !2R! " 10#3g must be
considered.

In what follows, we consider effects up to and including
PNO(3). The leading PNO(3) effects are proportional to
the speed V! of the Earth as it revolves about the Sun and
are of order gV! " 10#4g, where g ¼ GNm

S=R2
! for a

laboratory on the surface of the Earth. This yields sensi-
tivity to various components of the coefficients ð !aweffÞ! and
ð !cwÞ!". For some laboratory tests, it is advantageous to
consider also PNO(3) effects proportional to the smaller
speed VL of the laboratory due to the rotation of the Earth,
which are of order gVL " 10#6g. The benefit arises in two
ways. First, inclusion of the boost VL introduces effects
proportional to ð !aweffÞ! that vary sidereally instead of annu-
ally. This offers access to ð !aweffÞ! for measurements con-
ducted on comparatively short time scales, albeit at a
sensitivity reduced by about 2 orders of magnitude.
Second, certain laboratory tests have greater sensitivity to
forces in the x̂ and ŷ directions than to ones in the ẑ
direction. The inclusion of effects from ð !aweffÞ! and
ð !cwÞ!" that are proportional to VL can then introduce
new sensitivities or improve existing ones.

So far, modifications to the trajectory of the test body
arising from the coefficients !s!" have been disregarded.
However, it is straightforward to incorporate these in the
Lagrangian at PNO(2) because the coordinate choices
made here are consistent with those of Ref. [7] at this
perturbative order. In the laboratory frame, we find the
PNO(2) contribution from !s!" to the Lagrangian of the
test body can be written

Lð2Þ
s ¼ mTg

!
!sẑ x̂x̂þ !sẑ ŷŷ#

1

2
!sẑ ẑẑ#

3

2
!st̂ t̂ẑ

"
: (130)

It turns out that Lð2Þ
s suffices to achieve sensitivity to !s!" at

PNO(3). The point is that the leading PNO(3) effects are
proportional to V!, while inclusion of effects proportional
to VL offers no additional benefit in this case for the tests
we consider. The coefficients !s!" are species independent,
so they are unobservable in WEP tests. Moreover, inspec-

tion of Lð2Þ
s reveals that the coefficients !s!̂ "̂ already vary at

the sidereal frequency through the transformation to the
Sun frame.

In the laboratory frame, the PNO(3) Lagrangian Lð3Þ
a;c;s

obtained from Eq. (127) and incorporating effects from
!s!̂ "̂ via Eq. (130) is somewhat lengthy in form. As an
illustration of its structure and implications, we can restrict

attention to its PNO(2) limit Lð2Þ
a;c;s. We find

Lð2Þ
a;c;s¼

1

2
mTð1þð !cTÞt̂ t̂Þ _xĵ _xĵþmTð !cTÞĵ k̂ _xĵ _xk̂

#mTg
#
1þ 2#

mT ð !aTeffÞt̂þ
2#

mS ð !aSeffÞt̂þð !cTÞt̂ t̂

þð !cSÞt̂ t̂þ
3

2
!st̂ t̂þ

1

2
!sẑẑ

$
zþmTgð !sẑx̂xþ !sẑŷyÞ: (131)

Varying this result yields the Euler-Lagrange equations of
motion, which we can express in the form of the modified
force law

Fĵ ¼ mĵ k̂ €xk̂: (132)

At this perturbative order, the inertial and gravitational
forces acting on the test particle are given by

Fx̂ ¼ mTg!sẑ x̂;

Fŷ ¼ mTg!sẑ ŷ;

Fẑ ¼ #mTg
#
1þ 2#

mT ð !aTeffÞt̂ þ
2#

mS ð !aSeffÞt̂ þ ð !cTÞt̂ t̂

þ ð !cSÞt̂ t̂ þ
3

2
!st̂ t̂ þ

1

2
!sẑ ẑ

$
; (133)

while

mĵ k̂ ¼ mTð1þ ð !cTÞt̂ t̂Þ$ĵ k̂ þ 2mTð !cTÞðĵ k̂Þ (134)

is the effective inertial mass.
These results reveal the generic feature that the gravita-

tional force Fĵ acquires tiny corrections both along the ẑ

direction and perpendicular to it. Also, the response of the
test body deviates slightly from the direction of the applied
force because the effective inertial mass mĵ k̂ depends on

the coefficients ð !cTÞ!̂ "̂. In principle, some of these effects
are detectable in sensitive laboratory tests, and the corre-
sponding signals are discussed using PNO(3) results in the
following subsections.
Some coefficients appear in combinations that are

challenging to separate in laboratory tests. This is true,
for example, of the coefficients #ð !aTeffÞT and ð !cTÞTT .
Consider for simplicity the scenario with only isotropic
Lorentz violation in the Sun-centered frame, where the
nonzero coefficients are #ð !aTeffÞT and ð !cTÞTT ¼ 3ð !cTÞXX ¼
3ð !cTÞYY ¼ 3ð !cTÞZZ. In the laboratory frame, ð !aTeffÞt̂ "
#ð !aTeffÞT and ð !cTÞt̂ t̂ " ð !cTÞTT up to boost factors. These
coefficients therefore cannot be readily separated in
gravimeter tests, which depend on time variations from
anisotropic effects. Moreover, inspection of the PNO(2)
Lagrangian (131) reveals that if 3#ð !aTeffÞt̂ ¼ mTð !cTÞt̂ t̂ then
the contributions of #ð !aTeffÞt̂ and ð !cTÞt̂ t̂ to the effective
inertial and gravitational masses are identical. The combi-
nation #ð !aTeffÞT #mTð !cTÞTT=3 therefore cannot be readily
separated in conventional WEP tests either. Note that
WEP tests comparing a particle and its antiparticle can
in principle evade this difficulty because the sign of
#ð !aTeffÞT differs between the two. Another possibility
would be to compare matter with light, an option consid-
ered further in Sec. XI.

B. Free-fall gravimeter tests

In this subsection, we consider laboratory tests that
monitor the motion of a test body in free fall near the
surface of the Earth. The equation of motion for the test
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Frameworks for Lorentz violation
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•  Key Idea: Rotate or boost your experiment – physics changes! 
•  Approaches: 
1)  modified Lorentz transformation 

-  vacuum empty 
-  deformed lightcone 
-  “simple”, kinematical, phenomenological 
-  e.g., RMS framework, DSR, … 

 

2)  “background” tensor fields (aµ, bµ, cµ!, kµ!"# ,… ) 
-  vacuum contains background fields 
-  dynamical, can incorporate QM, etc. 
-  complicated, many possible effects   
-  e.g., Standard-Model Extension 
-  contains test frameworks 1) as limiting cases  



Tidal acceleration
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Establishing the signal arising from nonzero coefficients
for Lorentz violation requires the transformation from the
Sun-centered frame to a frame comoving with the satellite.
The satellite frame serves as the equivalent of the labora-
tory frame for terrestrial searches. We denote coordinates
in the satellite frame by x!̂.

Since the satellite orbit is inclined relative to the Earth-
centered frame, it is also useful to introduce an intermedi-
ate frame aligned with the satellite orbit and hence rotated
with respect to the Earth-centered frame. The intermediate
coordinates are denoted by x!

0
. The rotation transforma-

tion from xj
0
to x~j can be written as the matrix

R
~jk0

1 ¼
cos"2 " cos"1 sin"2 sin"1 sin"2

sin"2 cos"1 cos"2 " sin"1 cos"2

0 sin"1 cos"1

0
@

1
A (156)

using the angles "1 and "2 defined in Table IX.
The connection between the satellite coordinates and the

Earth-centered coordinates can be written

x~j ¼ R
~jk0

1 ðRk0 l̂
2 xl̂ þ xk

0
s Þ: (157)

Here, xk
0
s is the world line of the satellite in the intermediate

coordinate system. This world line can be parametrized as

xk
0
s ¼ ðr cosð!sT þ #1Þ; r sinð!sT þ #1Þ; 0Þ; (158)

where r is the magnitude of the Earth-satellite separation.
The satellite therefore orbits in the x0-y0 plane. Also, in

Eq. (157) the rotation Rk0 l̂
2 of the satellite is given by the

matrix

Rk0 l̂
2 ¼

cosð!rT þ #2Þ " sinð!rT þ #2Þ 0
sinð!rT þ #2Þ cosð!rT þ #2Þ 0

0 0 1

0
@

1
A: (159)

The axis of the satellite rotation is therefore along ẑ.
For our purposes, it suffices to obtain explicitly the local

differential acceleration !ax̂ of the test bodies in the x̂
direction. We have

!ax̂ & d2!x̂

dt̂2
¼ !ax̂tidal þ!ax̂LV þ . . . : (160)

The first term on the right-hand side of this expression is
the conventional Newton tidal term. It takes the form

!ax̂tidal ¼ "
!
3

2
!2

s cosð2!rT " 2!sT þ #2 " #1Þ

þ!2
r þ

1

2
!2

s

"
!x̂: (161)

The second term in Eq. (160) contains Lorentz-violating
contributions to the differential acceleration. It can be
written

!ax̂LV ¼ r!2
s

X

w;n

!
Nw

1

m1
" Nw

2

m2

"
ðPn sinð!nT þ $nÞ

þQn cosð!nT þ $nÞÞ: (162)

The amplitudes Pm, Qm and the corresponding phases
are provided in Table X. Finally, the ellipsis in Eq. (160)
represents higher-order general-relativistic corrections
and Lorentz-violating effects at the same post-Newtonian
order as !ax̂tidal. The latter are typically of lesser interest.
If desired, the differential acceleration !aŷ along ŷ can be
obtained by performing the transformation !rT ! !rT "
%=2 on Eq. (160).

B. MicroSCOPE and STEP

Within our idealized scenario, MicroSCOPE [84] and
STEP [85] can be analyzed in parallel. Each apparatus
consists of a pair of cylindrical test bodies made of differ-
ent material but having a common symmetry axis. The test
bodies are free to move along this axis. In satellite coor-
dinates, this direction lies along x̂ and is perpendicular both
to the direction of motion of the satellite and to the axis of
the satellite rotation.
One prosaic origin of relative motion of the test bodies

along the x̂ direction could be the influence of tidal forces
on a misalignment of the two centers of mass, which would
lead to the acceleration !ax̂tidal in Eq. (160). This can be
separated from the acceleration due to WEP violations
stemming from Lorentz-invariant sources, which enters
with the characteristic frequency !s "!r. Here, we are
interested in a WEP-violating acceleration !ax̂LV arising
from the coefficients ð "aweffÞ! and ð "cwÞ!& for Lorentz viola-
tion. This can be distinguished from both the above effects
through careful separation of the frequencies associated
with the amplitudes in Table X, except for the amplitude
Q!s"!r

.
The sensitivity goals of MicroSCOPE and STEP are

!a=r!2
s < 10"15 and !a=r!2

s < 10"18, respectively.
These sensitivities and the results in Table X can be used
to obtain rough estimates of the reach of these experiments
for studies of Lorentz violation. For this purpose, we take
the quantityNw

1 =m1 " Nw
2 =m2 appearing in Eq. (162) to be

of order 10"2 GeV"1, which is the best available value
with the Pt-Ir, Be, and Nb test bodies presently proposed
for STEP. Note that the bounds scale linearly with this
difference, so a careful choice of test-body material can
maximize sensitivity to Lorentz violation. Moreover,
combining results for different test materials can yield
additional independent sensitivities. Note also that the
experimental reach may vary with the choice of orbit.
For definiteness, we suppose the sines and cosines of "1

and "2 are of order one.
Our crude estimates for attainable sensitivities to

the moduli of ð "aweffÞ! and ð "cwÞ!& for MicroSCOPE and
STEP are presented in Table XI. In each row, the listed
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Orders of magnitude for SME coefficients
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Sizes of Lorentz-violating effects 
•  Benchmark estimate: 

coefficient size ~ mass of particle2/Planck mass 
e.g., neutron     ~  mn

2 / 1019 GeV ! 10-19 GeV 

e.g., electron     ~ me=.5 MeV  (current sensitivity ~ .01 MeV) 

naµ

     ~ 10-10- 10-35 

e
Za

•  However, with gravity couplings coefficients could be quite large 
(“countershading”) 

 could be as big as 10-9 m2 ~ 1021 GeV-2 



nadir pointing
rotation (leading order)
écrire cas omega s 
différent de omega r
heterodyne meas ?

WEP violation through matter dependent Lorentz violation

Test of Lorentz symmetry with MICROSCOPE MICROSCOPE Colloquium IV, Palaiseau, 16/11/2015C. Guerlin

a capacitor. Any weak movement of the proof mass with
respect to the electrode modifies the recovering surface or
the gap between them and generates opposite variations
of the relative capacitance. The difference of capacitance
is detected through a charge amplifier and an heterodyne
filtering, and the signal is digitized. The combination of
the signals provided by the different electrodes – that corre-
spond to different axes – provides the mass’s position. The
amplified signal is then and processed with the control
algorithm in order to compute the voltage to apply to the
electrodes in order to compensate for the mass’s motion
and maintain it motionless at the center of the electrostatic
cage. The computed voltage is amplified and opposite volt-
ages are applied to a symmetric pair of electrodes in order
to generate linear actuation forces. The fact that the same
electrodes allow both the action and the detection of the
mass’ position is possible because of the difference of fre-
quency bandwidths: the detection is performed with a
100 kHz pumping signal while the servo-loop channels
exhibit frequency bandwidths of a few Hertz. The gener-
ated voltage is proportional to the sensor acceleration
(Josselin et al., 1999). The proportionality factor depends
on the voltage of the mass. In order to maintain this volt-
age to a constant value, the mass is connected to a 7 lm of
diameter gold wire controlling its electrical potential. It is
the only physical contact between the electrostatically lev-
itated masses and the sensor cage.

The set of electrodes around each mass are engraved on
two gold coated silica cylinders (see Fig. 3). Six pairs of
electrodes enable the measurement of the mass’ position
and attitude and the control of its six degrees of freedom.
The four electrodes of the inner cylinder control the radial
axes ~Y and ~Z in translation and rotation. The outer cylin-
der is in charge of the ultra-sensitive ~X axis. The test of
the Equivalence Principle is performed along this axis
which is optimised to exhibit the best accuracy with a
reduced electrostatic stiffness. The translation along this
axis is controlled by the cylindrical outer electrodes posi-

tioned around the ends of the mass, while the rotation is
controlled by the eight central quadrants of the outer cylin-
der in regard of four flat areas on the mass.

For the Equivalence Principle test, the accelerations of
two masses of different composition are compared. Because
the two masses are cylindrical and concentric, they have the
same gravity center and are submitted to the same gravity
field. The dimensions of the masses are chosen to provide
the same moment of inertia along the three axes (Lafargue
et al., 2002). The two masses and their electrodes constitute
a differential accelerometer. The payload of the satellite,
called T-SAGE (Twin Space Accelerometers for Gravita-
tional Experimentation), consists in two independent and
identical (except the composition of the masses) differential
accelerometers. Developed by ONERA, these instruments
benefit from the experience acquired during previous space
missions such as GRACE and GOCE (Touboul et al.,
1999). The first instrument, which delivers the data to per-
form the test of the Equivalence Principle, includes one
mass of Platinum Rhodium alloy (PtRh10) with 90% Plat-
inum and 10% Rhodium, and one mass of Titanium alloy
(TA6V) with 90% Titanium, 6% Aluminium and 4% Vana-
dium. These materials have been selected among others
(like technological reasons and macroscopic properties)
because they have a large difference in subatomic particles,
which may increase the intensity of the Equivalence Princi-
ple violation (Damour and Blaser, 1994). The second differ-
ential accelerometer is composed of two masses constituted
with the same material, PtRh10. The provided measure-
ments are a reference to check the measurement exactitude.

Each differential electrostatic accelerometer is composed
of three units: the Sensor Unit (SU), the Front End Elec-
tronic Unit (FEEU) and the Interface Control Unit
(ICU). The SU corresponds to the mechanical core of the
instrument: the test masses surrounded each by a set of
electrodes arranged to perform the capacitive sensing of
the mass motion and the control of the electrical fields gen-
erating the electrostatic actuation on the masses. The core

Fig. 1. On the left, the satellite orbits around the Earth with two concentric test masses (yellow and blue) of different composition. A difference in their
trajectories indicates a violation of the Equivalence Principle. For the MICROSCOPE experiment, on the right, the measurement is not the difference of
trajectories, but the difference in the forces applied to maintain the masses relatively motionless. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

1636 É. Hardy et al. / Advances in Space Research 52 (2013) 1634–1646Inertial mode Nadir pointing  

a capacitor. Any weak movement of the proof mass with
respect to the electrode modifies the recovering surface or
the gap between them and generates opposite variations
of the relative capacitance. The difference of capacitance
is detected through a charge amplifier and an heterodyne
filtering, and the signal is digitized. The combination of
the signals provided by the different electrodes – that corre-
spond to different axes – provides the mass’s position. The
amplified signal is then and processed with the control
algorithm in order to compute the voltage to apply to the
electrodes in order to compensate for the mass’s motion
and maintain it motionless at the center of the electrostatic
cage. The computed voltage is amplified and opposite volt-
ages are applied to a symmetric pair of electrodes in order
to generate linear actuation forces. The fact that the same
electrodes allow both the action and the detection of the
mass’ position is possible because of the difference of fre-
quency bandwidths: the detection is performed with a
100 kHz pumping signal while the servo-loop channels
exhibit frequency bandwidths of a few Hertz. The gener-
ated voltage is proportional to the sensor acceleration
(Josselin et al., 1999). The proportionality factor depends
on the voltage of the mass. In order to maintain this volt-
age to a constant value, the mass is connected to a 7 lm of
diameter gold wire controlling its electrical potential. It is
the only physical contact between the electrostatically lev-
itated masses and the sensor cage.

The set of electrodes around each mass are engraved on
two gold coated silica cylinders (see Fig. 3). Six pairs of
electrodes enable the measurement of the mass’ position
and attitude and the control of its six degrees of freedom.
The four electrodes of the inner cylinder control the radial
axes ~Y and ~Z in translation and rotation. The outer cylin-
der is in charge of the ultra-sensitive ~X axis. The test of
the Equivalence Principle is performed along this axis
which is optimised to exhibit the best accuracy with a
reduced electrostatic stiffness. The translation along this
axis is controlled by the cylindrical outer electrodes posi-

tioned around the ends of the mass, while the rotation is
controlled by the eight central quadrants of the outer cylin-
der in regard of four flat areas on the mass.

For the Equivalence Principle test, the accelerations of
two masses of different composition are compared. Because
the two masses are cylindrical and concentric, they have the
same gravity center and are submitted to the same gravity
field. The dimensions of the masses are chosen to provide
the same moment of inertia along the three axes (Lafargue
et al., 2002). The two masses and their electrodes constitute
a differential accelerometer. The payload of the satellite,
called T-SAGE (Twin Space Accelerometers for Gravita-
tional Experimentation), consists in two independent and
identical (except the composition of the masses) differential
accelerometers. Developed by ONERA, these instruments
benefit from the experience acquired during previous space
missions such as GRACE and GOCE (Touboul et al.,
1999). The first instrument, which delivers the data to per-
form the test of the Equivalence Principle, includes one
mass of Platinum Rhodium alloy (PtRh10) with 90% Plat-
inum and 10% Rhodium, and one mass of Titanium alloy
(TA6V) with 90% Titanium, 6% Aluminium and 4% Vana-
dium. These materials have been selected among others
(like technological reasons and macroscopic properties)
because they have a large difference in subatomic particles,
which may increase the intensity of the Equivalence Princi-
ple violation (Damour and Blaser, 1994). The second differ-
ential accelerometer is composed of two masses constituted
with the same material, PtRh10. The provided measure-
ments are a reference to check the measurement exactitude.

Each differential electrostatic accelerometer is composed
of three units: the Sensor Unit (SU), the Front End Elec-
tronic Unit (FEEU) and the Interface Control Unit
(ICU). The SU corresponds to the mechanical core of the
instrument: the test masses surrounded each by a set of
electrodes arranged to perform the capacitive sensing of
the mass motion and the control of the electrical fields gen-
erating the electrostatic actuation on the masses. The core

Fig. 1. On the left, the satellite orbits around the Earth with two concentric test masses (yellow and blue) of different composition. A difference in their
trajectories indicates a violation of the Equivalence Principle. For the MICROSCOPE experiment, on the right, the measurement is not the difference of
trajectories, but the difference in the forces applied to maintain the masses relatively motionless. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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non LV WEP violation:
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Signal frequency:

Licence de physique LP205 Année 2011-2012

∆E ∝ �I · �J

t
ωr

ωs

ωs ± ωr

ωs ± ωr ± Ω
2ωs − ωr

δh
< δh >

Ω

∆ω

ω Ω
≤ 10−16

∆g

g Ω
≤ 10−9

∆c

c Ω
≤ 10−XX

1/c G h̄

E0 = mec2

∆Ee ∝ α2E0/2 = 13, 6 eV= Ry

∆E = f(α, mq/ΛQCD, me/ΛQCD)

∆τ = h/∆E

∝ α2R∞

∝ α2Frel(Zα)Ry

∝ gI(me/mp)α2Frel(Zα)Ry

E0 , ∆Efs , ∆Ehfs , ∆Eg

×α2 , ×α2Frel(Zα) , ×gI(me/mp)

mg = mi

ν = f(α, me/mp, mq/ΛQCD)

ν = f(α, me/ΛQCD, mq/ΛQCD)

dτ/dt = f(U, v)

Devoir maison 2 C. Guerlin, A. Zaslavsky

DC
(lowest order)

DC

Licence de physique LP205 Année 2011-2012

∆E ∝ �I · �J

t
ωr

ωs

ωs ± ωr

ωs ± ωr ± Ω
2ωs − ωr

δh
< δh >

Ω

∆ω

ω Ω
≤ 10−16

∆g

g Ω
≤ 10−9

∆c

c Ω
≤ 10−XX

1/c G h̄

E0 = mec2

∆Ee ∝ α2E0/2 = 13, 6 eV= Ry

∆E = f(α, mq/ΛQCD, me/ΛQCD)

∆τ = h/∆E

∝ α2R∞

∝ α2Frel(Zα)Ry

∝ gI(me/mp)α2Frel(Zα)Ry

E0 , ∆Efs , ∆Ehfs , ∆Eg

×α2 , ×α2Frel(Zα) , ×gI(me/mp)

mg = mi

ν = f(α, me/mp, mq/ΛQCD)

ν = f(α, me/ΛQCD, mq/ΛQCD)

dτ/dt = f(U, v)

Devoir maison 2 C. Guerlin, A. Zaslavsky

sensitive axis

to the centrifugal acceleration !2R! " 10#3g must be
considered.

In what follows, we consider effects up to and including
PNO(3). The leading PNO(3) effects are proportional to
the speed V! of the Earth as it revolves about the Sun and
are of order gV! " 10#4g, where g ¼ GNm

S=R2
! for a

laboratory on the surface of the Earth. This yields sensi-
tivity to various components of the coefficients ð !aweffÞ! and
ð !cwÞ!". For some laboratory tests, it is advantageous to
consider also PNO(3) effects proportional to the smaller
speed VL of the laboratory due to the rotation of the Earth,
which are of order gVL " 10#6g. The benefit arises in two
ways. First, inclusion of the boost VL introduces effects
proportional to ð !aweffÞ! that vary sidereally instead of annu-
ally. This offers access to ð !aweffÞ! for measurements con-
ducted on comparatively short time scales, albeit at a
sensitivity reduced by about 2 orders of magnitude.
Second, certain laboratory tests have greater sensitivity to
forces in the x̂ and ŷ directions than to ones in the ẑ
direction. The inclusion of effects from ð !aweffÞ! and
ð !cwÞ!" that are proportional to VL can then introduce
new sensitivities or improve existing ones.

So far, modifications to the trajectory of the test body
arising from the coefficients !s!" have been disregarded.
However, it is straightforward to incorporate these in the
Lagrangian at PNO(2) because the coordinate choices
made here are consistent with those of Ref. [7] at this
perturbative order. In the laboratory frame, we find the
PNO(2) contribution from !s!" to the Lagrangian of the
test body can be written

Lð2Þ
s ¼ mTg

!
!sẑ x̂x̂þ !sẑ ŷŷ#

1

2
!sẑ ẑẑ#

3

2
!st̂ t̂ẑ

"
: (130)

It turns out that Lð2Þ
s suffices to achieve sensitivity to !s!" at

PNO(3). The point is that the leading PNO(3) effects are
proportional to V!, while inclusion of effects proportional
to VL offers no additional benefit in this case for the tests
we consider. The coefficients !s!" are species independent,
so they are unobservable in WEP tests. Moreover, inspec-

tion of Lð2Þ
s reveals that the coefficients !s!̂ "̂ already vary at

the sidereal frequency through the transformation to the
Sun frame.

In the laboratory frame, the PNO(3) Lagrangian Lð3Þ
a;c;s

obtained from Eq. (127) and incorporating effects from
!s!̂ "̂ via Eq. (130) is somewhat lengthy in form. As an
illustration of its structure and implications, we can restrict

attention to its PNO(2) limit Lð2Þ
a;c;s. We find

Lð2Þ
a;c;s¼

1

2
mTð1þð !cTÞt̂ t̂Þ _xĵ _xĵþmTð !cTÞĵ k̂ _xĵ _xk̂

#mTg
#
1þ 2#

mT ð !aTeffÞt̂þ
2#

mS ð !aSeffÞt̂þð !cTÞt̂ t̂

þð !cSÞt̂ t̂þ
3

2
!st̂ t̂þ

1

2
!sẑẑ

$
zþmTgð !sẑx̂xþ !sẑŷyÞ: (131)

Varying this result yields the Euler-Lagrange equations of
motion, which we can express in the form of the modified
force law

Fĵ ¼ mĵ k̂ €xk̂: (132)

At this perturbative order, the inertial and gravitational
forces acting on the test particle are given by

Fx̂ ¼ mTg!sẑ x̂;

Fŷ ¼ mTg!sẑ ŷ;

Fẑ ¼ #mTg
#
1þ 2#

mT ð !aTeffÞt̂ þ
2#

mS ð !aSeffÞt̂ þ ð !cTÞt̂ t̂

þ ð !cSÞt̂ t̂ þ
3

2
!st̂ t̂ þ

1

2
!sẑ ẑ

$
; (133)

while

mĵ k̂ ¼ mTð1þ ð !cTÞt̂ t̂Þ$ĵ k̂ þ 2mTð !cTÞðĵ k̂Þ (134)

is the effective inertial mass.
These results reveal the generic feature that the gravita-

tional force Fĵ acquires tiny corrections both along the ẑ

direction and perpendicular to it. Also, the response of the
test body deviates slightly from the direction of the applied
force because the effective inertial mass mĵ k̂ depends on

the coefficients ð !cTÞ!̂ "̂. In principle, some of these effects
are detectable in sensitive laboratory tests, and the corre-
sponding signals are discussed using PNO(3) results in the
following subsections.
Some coefficients appear in combinations that are

challenging to separate in laboratory tests. This is true,
for example, of the coefficients #ð !aTeffÞT and ð !cTÞTT .
Consider for simplicity the scenario with only isotropic
Lorentz violation in the Sun-centered frame, where the
nonzero coefficients are #ð !aTeffÞT and ð !cTÞTT ¼ 3ð !cTÞXX ¼
3ð !cTÞYY ¼ 3ð !cTÞZZ. In the laboratory frame, ð !aTeffÞt̂ "
#ð !aTeffÞT and ð !cTÞt̂ t̂ " ð !cTÞTT up to boost factors. These
coefficients therefore cannot be readily separated in
gravimeter tests, which depend on time variations from
anisotropic effects. Moreover, inspection of the PNO(2)
Lagrangian (131) reveals that if 3#ð !aTeffÞt̂ ¼ mTð !cTÞt̂ t̂ then
the contributions of #ð !aTeffÞt̂ and ð !cTÞt̂ t̂ to the effective
inertial and gravitational masses are identical. The combi-
nation #ð !aTeffÞT #mTð !cTÞTT=3 therefore cannot be readily
separated in conventional WEP tests either. Note that
WEP tests comparing a particle and its antiparticle can
in principle evade this difficulty because the sign of
#ð !aTeffÞT differs between the two. Another possibility
would be to compare matter with light, an option consid-
ered further in Sec. XI.

B. Free-fall gravimeter tests

In this subsection, we consider laboratory tests that
monitor the motion of a test body in free fall near the
surface of the Earth. The equation of motion for the test
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Example of signals in:



SME matter gravity couplings
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Species-dependent coefficients for Lorentz violation  

Note: a! is unobservable in flat spacetime 

•  Start with lagrangian for fermions in curved spacetime -> Classical 
action for spinless matter: 

•  For basic matter (e, p, n) there are 36 coefficients 
•  Features:  

•  Flavor-dependent anisotropic gravitational fields 
•  Test-particle dependent motion in a gravitational field  

(WEP violation!)  
•  Sidereal time variation 
•  Can be probed in WEP tests, solar-system tests, ... 

SME matter-gravity couplings 

(Kosteleck! & Tasson PRL 09, PRD 11) 


