

${ }^{1}$ LKB, ${ }^{2}$ SYRTE,

${ }^{3}$ Embry-Riddle Aeronautical University, ${ }^{4}$ St Olaf College

Outline

Lorentz symmetry

Lorentz and WEP violation in Standard Model Extension (SME)

- SME model for MICROSCOPE

Data analysis

Lorentz symmetry (in short): what

* Lorentz symmetry: symmetry of spacetime under Lorentz transformations (boosts and rotations)
Lorentz invariant theory: physical results of an experiment are independent of

* General Relativity and Standard Model have Lorentz invariance (resp. local and global)

Lorentz symmetry (in short): why testing it

* Lorentz symmetry: symmetry of spacetime under Lorentz transformations (boosts and rotations)
* Lorentz invariant theory: physical results of an experiment are independent of

* General Relativity and Standard Model have Lorentz invariance (resp. local and global)
* But could be broken in alternative theories beyond SM and GR: motivation for tests

Lorentz symmetry (in short): how to test it

* Lorentz symmetry: symmetry of spacetime under Lorentz transformations (boosts and rotations)
* Lorentz invariant theory: physical results of an experiment are independent of

* General Relativity and Standard Model have Lorentz invariance (resp. local and global)
* But could be broken in alternative theories beyond SM and GR: motivation for tests
* Basic experimental approach for test:
- rotate experiment
- search for periodic signals
* Analysis of tests beyond GR and SM: specific theory or general framework

Lorentz symmetry (in short): how to test it

* Lorentz symmetry: symmetry of spacetime under Lorentz transformations (boosts and rotations)
* Lorentz invariant theory: physical results of an experiment are independent of

* General Relativity and Standard Model have Lorentz invariance (resp. local and global)
* But could be broken in alternative theories beyond SM and GR: motivation for tests
* Basic experimental approach for test:
- rotate experiment
- search for periodic signals
* Analysis of tests beyond GR and SM: specific theory orgeneral framework

Framework for LS test: Standard Model Extension (in short)

* Standard Model Extension (SME): very broad framework for Lorentz symmetry tests
* SME structure:
D. Colladay and V.A. Kostelecky., Phys. Rev. D 58, 116002 (1998)
- parametrizing all possible Lorentz violations (LV) for SM and GR fields
- in the Lagrangian or action of SM and GR

$$
L_{\mathrm{SME}}=L_{\mathrm{GR}}+L_{\mathrm{SM}}+L_{\mathrm{LV}}
$$

- for fermions, test bodies, gravitational sources...
* Lorentz violations appear as coupling of dynamics to background fields, in general tensors (preferred directions)
- one element of one the tensors: one coefficient for LV
- coefficients are allowed to be species dependent

Framework for LS test: Standard Model Extension (in short)

* Standard Model Extension (SME): very broad framework for Lorentz symmetry tests
* SME structure:
D. Colladay and V.A. Kostelecky., Phys. Rev. D 58, 116002 (1998)
- parametrizing all possible Lorentz violations (LV) for SM and GR fields
- in the Lagrangian or action of SM and GR

$$
L_{\mathrm{SME}}=L_{\mathrm{GR}}+L_{\mathrm{SM}}+L_{\mathrm{LV}}
$$

- for fermions, test bodies, gravitational sources...
* Lorentz violations appear as coupling of dynamics to background fields, in general tensors (preferred directions)
- one element of one the tensors: one coefficient for LV
- coefficients are allowed to be species dependent

\longrightarrowwhen rotating an experiment, background tensors lead to non zero signals at harmonics of rotation frequency in observables

Framework for LS test: Standard Model Extension (in short)

* Standard Model Extension (SME): very broad framework for Lorentz symmetry tests
* SME structure:
D. Colladay and V.A. Kostelecky., Phys. Rev. D 58, 116002 (1998)
- parametrizing all possible Lorentz violations (LV) for SM and GR fields
- in the Lagrangian or action of SM and GR

$$
L_{\mathrm{SME}}=L_{\mathrm{GR}}+\dot{L}_{\mathrm{SM}}+L_{\mathrm{LV}}
$$

- for fermions, test bodies, gravitational sources...
* Lorentz violations appear as coupling of dynamics to background fields, in general tensors (preferred directions)
- one element of one the tensors: one coefficient for LV
- coefficients are allowed to be species dependent
when rotating an experiment, background tensors lead to non zero signals at harmonics of rotation frequency in observables

\Rightarrow test-particle dependnt motion in a gravitational field:
LV WEP violation

Example of signals for differential acceleration in:

Nadir pointing

Signal frequency:

non LV WEP violation:	ω_{r}	DC
LV WEP violation:	DC	ω_{r}

WEP: SME coefficients for matter-gravity couplings

* Gravitationally coupled matter sector of SME: species dependence of motion of a test particle in a gravitational field:

WEP: SME coefficients for matter-gravity couplings

* Gravitationally coupled matter sector of SME: species dependence of motion of a test particle in a gravitational field:

source dependent field distorsions
+ test-particle dependent responses
due to background tensors

$$
\bar{c}_{\mu \nu}^{w},\left(\bar{a}_{\mathrm{eff}}\right)_{\mu}^{w}
$$

WEP: SME coefficients for matter-gravity couplings

* Gravitationally coupled matter sector of SME: species dependence of motion of a test particle in a gravitational field:

source dependent field distorsions
+ test-particle dependent responses
due to background tensors

$$
\bar{c}_{\mu \nu}^{w},\left(\bar{a}_{\mathrm{eff}}\right)_{\mu}^{w}
$$

\square
 WEP: SME coefficients for matter-gravity couplings

* Gravitationally coupled matter sector of SME: species dependence of motion of a test particle in a gravitational field:

source dependent field distorsions
+ test-particle dependent responses
due to background tensors

$\bar{c}_{\mu \nu}^{w},\left(\bar{a}_{\mathrm{eff}}\right)_{\mu}^{w}$

«counter shaded» coefficients appear only in gravitational experiments poorly tested so far (gravimeter, ephemerides)

MICROSCOPE:

best constraints expected on $2 \bar{c}_{\mu \nu}^{w}$ and all $\left(\bar{e}_{\text {eff }}\right)_{\mu}^{w}$ coefficients improvements from 3 to 6 orders of magnitude over state of the art

Modeling and analyzing an experiment in SME

1) model, lab frame: express dynamics or observable including LV coefficients in the «lab» frame
2) model, SCF frame: coefficients for LV are compared in a common frame, e.g. Sun

Centered Celestial Equatorial Frame (SCF)
\Rightarrow use Lorentz transformation of LV tensors to express «lab» coefficients as a function of SCF coefficients

- leads to distinct time components due to: boost of the experiment wrt SCF, and rotation
- amplitudes $=$ linear combinations of SCF LV coefficients

3) analysis: decorrelate LV coefficients

> rich litterature where models derived for different experiments
numerous experimental tests done

SME model for MICROSCOPE in spin mode

- Ideal observable:

SPIN MODE (most general case)

local differential acceleration of the well-centered test bodies along sensitive axis (0 in the absence of WEP or Lorentz violation)

$$
\Delta a^{\hat{x}}
$$

SME model for MICROSCOPE in spin mode

- Ideal observable:

SPIN MODE (most general case)

local differential acceleration of the well-centered test bodies along sensitive axis (0 in the absence of WEP or Lorentz violation)

- LV model:

$$
\Delta a^{\hat{x}}=\Delta a_{L V}^{\hat{x}}
$$

time series expansion:

$$
\Delta a_{L V}^{\hat{x}}=r \omega_{r}^{2} \sum_{n}\left(C_{\omega_{n}} \cos \left(\omega_{n} t+\alpha_{n}\right)+S_{\omega_{n}} \sin \left(\omega_{n} t+\alpha_{n}\right)\right)
$$

SME model for MICROSCOPE in spin mode

- Ideal observable:

SPIN MODE (most general case)

local differential acceleration of the well-centered test bodies along sensitive axis (0 in the absence of WEP or Lorentz violation)

- LV model:

$$
\Delta a^{\hat{x}}=\Delta a_{L V}^{\hat{x}}
$$

time series expansion:

$$
\Delta a_{L V}^{\hat{x}}=r \omega_{r}^{2} \sum_{n}\left(C_{\omega_{n}} \cos \left(\omega_{n} t+\alpha_{n}\right)+S_{\omega_{n}} \sin \left(\omega_{n} t+\alpha_{n}\right)\right)
$$

LV frequencies:

SME model for MICROSCOPE in spin mode

- Ideal observable:

SPIN MODE (most general case)

local differential acceleration of the well-centered test bodies along sensitive axis (0 in the absence of WEP or Lorentz violation)

- LV model:

$$
\Delta a^{\hat{x}}=\Delta a_{L V}^{\hat{x}}
$$

time series expansion:

$$
\Delta a_{L V}^{\hat{x}}=r \omega_{r}^{2} \sum_{n}\left(C_{\omega_{n}} \cos \left(\omega_{n} t+\alpha_{n}\right)+S_{\omega_{n}} \sin \left(\omega_{n} t+\alpha_{n}\right)\right)
$$

> LV frequencies:

each amplitude: a linear combination of SME coefficients

$$
C_{\omega_{n}}, S_{\omega_{n}}=f\left(\bar{c}_{\mu \nu}^{w},\left(\bar{a}_{\mathrm{eff}}\right)_{\mu}^{w}\right)
$$

linear combination

depends on: boost factors, species composition of test masses

-a Expected precision and state of the art

$$
\Delta a_{L V}^{\hat{t}}=r \omega_{r}^{2} \sum_{n}\left(C_{\omega_{n}} \cos \left(\omega_{n} t+\alpha_{n}\right)+S_{\omega_{n}} \sin \left(\omega_{n} t+\alpha_{n}\right)\right)
$$

- Amplitudes: if the relative uncertainty at each frequency is $\delta a / a \sim 10^{-15}$

$$
\Rightarrow C_{\omega_{n}}, S_{\omega_{n}} \text { adjusted with uncertainty } 10^{-15}
$$

Expected precision and state of the art

$$
\Delta a_{L V}^{\hat{x}}=r \omega_{r}^{2} \sum_{n}\left(C_{\omega_{n}} \cos \left(\omega_{n} t+\alpha_{n}\right)+S_{\omega_{n}} \sin \left(\omega_{n} t+\alpha_{n}\right)\right)
$$

- Amplitudes: if the relative uncertainty at each frequency is $\delta a / a \sim 10^{-15}$

$$
\Rightarrow C_{\omega_{n}}, S_{\omega_{n}} \text { adjusted with uncertainty } 10^{-15}
$$

- SME coefficients:

$$
C_{\omega_{n}}, S_{\omega_{n}}=f\left(\bar{c}_{\mu \nu}^{w},\left(\bar{a}_{\mathrm{eff}}\right)_{\mu}^{w}\right)
$$

scale factors in linear combination:

- species dependence:

$$
\text { prefactor on the order of differential neutron-to-proton ratio }(/ \mathrm{GeV}): 10^{-2} \mathrm{GeV}^{-1}
$$

$$
0.06(/ \mathrm{GeV})
$$

Expected precision and state of the art

$$
\Delta a_{L V}^{\hat{x}}=r \omega_{r}^{2} \sum_{n}\left(C_{\omega_{n}} \cos \left(\omega_{n} t+\alpha_{n}\right)+S_{\omega_{n}} \sin \left(\omega_{n} t+\alpha_{n}\right)\right)
$$

- Amplitudes: if the relative uncertainty at each frequency is $\delta a / a \sim 10^{-15}$

$$
\Rightarrow C_{\omega_{n}}, S_{\omega_{n}} \quad \text { adjusted with uncertainty } 10^{-15}
$$

- SME coefficients:

$$
C_{\omega_{n}}, S_{\omega_{n}}=f\left(\bar{c}_{\mu \nu}^{w},\left(\bar{a}_{\mathrm{eff}}\right)_{\mu}^{w}\right)
$$

scale factors in linear combination:

- species dependence:

0.06 (/ GeV)
prefactor on the order of differential neutron-to-proton ratio (/ GeV): $10^{-2} \mathrm{GeV}^{-1}$

Uncertainty on SME coefficients:

Coefficient	MicroSCOPE
$\alpha\left(\bar{a}_{\text {eff }}^{e+p-n}\right)_{T}-\frac{1}{3} m^{p}\left(\bar{c}^{e+p-n}\right)_{T T}$	$\left\{10^{-13} \mathrm{GeV}\right\}$

$\left(\bar{c}^{n}\right)_{Q}$
from V. A. Kostelecky and J. D. Tasson, Phys. Rev. D 83, 016013 (2011)

Expected precision and state of the art

$$
\Delta a_{L V}^{\hat{x}}=r \omega_{r}^{2} \sum_{n}\left(C_{\omega_{n}} \cos \left(\omega_{n} t+\alpha_{n}\right)+S_{\omega_{n}} \sin \left(\omega_{n} t+\alpha_{n}\right)\right)
$$

- Amplitudes: if the relative uncertainty at each frequency is $\delta a / a \sim 10^{-15}$

$$
\Rightarrow C_{\omega_{n}}, S_{\omega_{n}} \text { adjusted with uncertainty } 10^{-15}
$$

- SME coefficients:

$$
C_{\omega_{n}}, S_{\omega_{n}}=f\left(\bar{c}_{\mu \nu}^{w},\left(\bar{a}_{\mathrm{eff}}\right)_{\mu}^{w}\right)
$$

scale factors in linear combination:

- species dependence:
prefactor on the order of differential neutron-to-proton ratio (/ GeV): $10^{-2} \mathrm{GeV}^{-1}$ 0.06 (/ GeV)
- boost factors (at first order)
10^{-4} (Earth)

Uncertainty on SME coefficients:

Coefficient	MicroSCOPE
$\alpha\left(\bar{a}_{\text {eff }}^{e+p-n}\right)_{T}-\frac{1}{3} m^{p}\left(\bar{c}^{e+p-n}\right)_{T T}$	$\left\{10^{-13} \mathrm{GeV}\right\}$
$\alpha\left(\bar{a}_{\text {eff }}^{e-n}\right)_{X}$	$\left\{10^{-9} \mathrm{GeV}\right\}$
$\alpha\left(\bar{e}_{\text {eff }}^{e f-n}\right)_{Y+Z}$	$\left\{10^{-9} \mathrm{GeV}\right\}$
$\left(\bar{c}^{n}\right)_{Q}$	$\left\{10^{-13}\right\}$
$\left(\bar{c}^{n}\right)_{(T J)}$	$\left\{10^{-9}\right\}$

from V. A. Kostelecky and J. D. Tasson, Phys. Rev. D 83, 016013 (2011)

Expected precision and state of the art

$$
\Delta a_{L V}^{\hat{x}}=r \omega_{r}^{2} \sum_{n}\left(C_{\omega_{n}} \cos \left(\omega_{n} t+\alpha_{n}\right)+S_{\omega_{n}} \sin \left(\omega_{n} t+\alpha_{n}\right)\right)
$$

- Amplitudes: if the relative uncertainty at each frequency is $\delta a / a \sim 10^{-15}$

$$
\Rightarrow C_{\omega_{n}}, S_{\omega_{n}} \text { adjusted with uncertainty } 10^{-15}
$$

- SME coefficients:

$$
C_{\omega_{n}}, S_{\omega_{n}}=f\left(\bar{c}_{\mu \nu}^{w},\left(\bar{a}_{\mathrm{eff}}\right)_{\mu}^{w}\right)
$$

scale factors in linear combination:

- species dependence:
prefactor on the order of differential neutron-to-proton ratio (/ GeV): $10^{-2} \mathrm{GeV}^{-1}$
0.06 (/ GeV)
- boost factors (at first order)
10^{-4} (Earth)
10^{-5} (satellite)

Coefficient	MicroSCOPE
$\alpha\left(\bar{a}_{\text {eff }}^{e+p-n}\right)_{T}-\frac{1}{3} m^{p}\left(\bar{c}^{e+p-n}\right)_{T T}$	$\left\{10^{-13} \mathrm{GeV}\right\}$
$\alpha\left(\bar{a}_{\text {eff }}^{e+} p-n\right)_{X}$	$\left\{10^{-9} \mathrm{GeV}\right\}$
$\alpha\left(\bar{a}_{\text {eff }}^{e+-n}\right)_{Y+Z}$	$\left\{10^{-9} \mathrm{GeV}\right\}$
$\alpha\left(\bar{a}_{\text {eff }}^{e+f}\right)_{Y}$	$\left\{10^{-7} \mathrm{GeV}\right\}$
$\alpha\left(\bar{a}_{\text {eff }}^{e q} p-n\right)_{Z}$	$\left\{10^{-7} \mathrm{GeV}\right\}$
$\left(\bar{c}^{n}\right)_{Q}$	$\left\{10^{-13}\right\}$
$\left(\bar{c}^{n}\right)_{(T J)}$	$\left\{10^{-9}\right\}$

Expected precision and state of the art

$$
\Delta a_{L V}^{\hat{x}}=r \omega_{r}^{2} \sum_{n}\left(C_{\omega_{n}} \cos \left(\omega_{n} t+\alpha_{n}\right)+S_{\omega_{n}} \sin \left(\omega_{n} t+\alpha_{n}\right)\right)
$$

- Amplitudes: if the relative uncertainty at each frequency is $\delta a / a \sim 10^{-15}$

$$
\Rightarrow C_{\omega_{n}}, S_{\omega_{n}} \text { adjusted with uncertainty } 10^{-15}
$$

- SME coefficients:

$$
C_{\omega_{n}}, S_{\omega_{n}}=f\left(\bar{c}_{\mu \nu}^{w},\left(\bar{a}_{\mathrm{eff}}\right)_{\mu}^{w}\right)
$$

scale factors in linear combination:

- species dependence:
prefactor on the order of differential neutron-to-proton ratio (/ GeV): $10^{-2} \mathrm{GeV}^{-1}$

$$
0.06 \text { (/ GeV) }
$$

- boost factors (at first order)
10^{-4} (Earth)
10^{-5} (satellite)

Uncertainty on SME coefficients:

Improvement by at least 3 orders of magnitude
from V. A. Kostelecky and J. D. Tasson, Phys. Rev. D 83, 016013 (2011)

Coefficient	MicroSCOPE
$\alpha\left(\bar{a}_{\text {eff }}^{e+p-n}\right)_{T}-\frac{1}{3} m^{p}\left(\bar{c}^{e+p-n}\right)_{T T}$	$\left\{10^{-13} \mathrm{GeV}\right\}$
$\alpha\left(\bar{a}_{\text {eff }}^{e+n}\right)_{X}$	$\left\{10^{-9} \mathrm{GeV}\right\}$
$\alpha\left(\bar{a}_{\text {eff }}^{e f} p-n\right)_{Y+Z}$	$\left\{10^{-9} \mathrm{GeV}\right\}$
$\alpha\left(\bar{a}_{\text {eff }}^{e+n}\right)_{Y}$	$\left\{10^{-7} \mathrm{GeV}\right\}$
$\alpha\left(\bar{a}_{\text {eff }}^{e+p-n}\right)_{Z}$	$\left\{10^{-7} \mathrm{GeV}\right\}$
$\left(\bar{c}^{n}\right)_{Q}$	$\left\{10^{-13}\right\}$
$\left(\bar{c}^{n}\right)_{(T J)}$	$\left\{10^{-9}\right\}$

Data analysis

- Real observable / model:
differential acceleration from N2c level data: $\quad \Delta a^{\hat{x}}=2 \Gamma_{m e s, d x}$

$$
\begin{aligned}
& \Delta \mathrm{a}^{\hat{q}} \equiv \frac{d^{2} \Delta \hat{x}}{d \hat{t}^{2}}=\Delta_{a_{\text {idial }}^{\hat{x}}}+\Delta_{\mathrm{LLV}}^{\hat{x}} \longrightarrow \Delta a_{\text {tidal }}^{\hat{x}}=A+B \cos \left(2\left(\omega_{s}-\omega_{r}\right) t+\Phi\right) \\
& \begin{array}{l}
\text { cstt } \\
\omega_{r} \\
\omega_{s} \\
\omega_{s} \pm \omega_{r} \\
\omega_{s} \pm \omega_{r} \pm \Omega \\
\omega_{s}-2 \omega_{r} \\
2 \omega_{s}-2 \omega_{r} \quad \text { additional frequencies from off-centering, to be included in }
\end{array} \\
& \text { time series fit }
\end{aligned}
$$

- Fit for amplitudes and estimation of statistical uncertainty:
- characterize noise
- fit e.g. by weighted least squares
M. Rodrigues, Moriond 2015

Data analysis

- Estimation of systematic uncertainty:
perturbations at
different frequencies
$f_{d, \text { sing }}=n_{1} f_{\text {orb }}+n_{2} f_{\text {spin }}$
forb
$f_{\text {spin }}-2 f_{\text {orb }}$
$2 f_{\text {orb }}$
$f_{\text {spin }}-f_{\text {orb }}$
3 forb
$f_{\text {spin }}$
$f_{\text {spin }}+f_{\text {orb }}$
$f_{\text {spin }}+2 f_{\text {orb }}$
errors on determinatin of forb and realization of $f_{\text {spin }}$
from E. Hardy et al., Space Sci. Rev. 180, p. 177 (2013)
- Estimation of systematic uncertainty:
perturbations at
different frequencies $f_{d, \text { sing }}=n_{1} f_{\text {orb }}+n_{2} f_{\text {spin }}$

errors on determinatin of $f_{\text {orb }}$ and realization of $f_{\text {spin }}$

$$
\text { phase known } \quad \text { phase unknown }\left(C_{\omega_{n}}, S_{\omega_{n}}\right)
$$

overlap with LV
frequencies

$f_{\text {orb }}$	ω_{r}
$f_{\text {spin }}-2 f_{\text {orb }}$	ω_{s}
$2 f_{\text {orb }}$	$\omega_{s} \pm \omega_{r}$
$f_{\text {spin }}-f_{\text {orb }}$	$\omega_{s} \pm \omega_{r} \pm \Omega$
$3 f_{\text {orb }}$	$\omega_{s}-2 \omega_{r}$
$f_{\text {spin }}$	

\rightarrow
estimate systematic uncertainty of each frequency component
(uncertainty on perturbation and projection on other frequencies) might be higher than 10^{-15}
in collaboration with
MICROSCOPE team

- Estimate correlations between fitted times series amplitudes
frequency difference $\Delta \omega$ resolved if time span of data longer than one period $T=2 \pi / \Delta \omega$
$\sim 1.10^{-4} \mathrm{~Hz}$
$\sim 6.10^{-4} \mathrm{~Hz}$

resolved for ~ 1 orbit duration
- decorrelate LV signal from perturbations / tidal signal
- decorrelate LV signals between them: helps to decorrelate LV coefficients
- Take precession into account: additional splitting by annual frequency around each frequency helps decorrelation of coefficients

Conclusion: 2014 questions adressed

SME search of LV with MICROSCOPE: possible improvement of several orders of magnitude on some coefficients

Questions on 2014 proposal:

- The signals you would like to analyze and the measured ones that will be exploited;
- Which accuracies your objectives require;
- In which experimental conditions, you need the measurement.

1) signal to be analyzed: N 2 (c) differential acceleration
2) relative accuracy required for improvement of at least 3 orders of magnitude: 10^{-15} at frequencies of interest (harmonics of spin, orbital, and annual frequencies)
3) most favorable experimental conditions:

- spin mode
- continuous data series of several orbits
- data sets spread over one year

The collaboration

Status and roadmap

(I) SME model derived (U.S. team)
[SME simulation and data analysis of other experiments exist (Paris team)

- collaboration with Q. Bailey in summer 2015
- publication of present best limits on target coefficients in summer 2015
- PhD thesis on SME tests a SYRTE

$$
\text { A. Hees, Q. Bailey, C. Guerlin, P. Wolf et al., Phys. Rev. D 92, } 064049 \text { (2015) }
$$

D Simulation/ data analysis to be adapted for MICROSCOPE (both groups)
D Evaluate systematics at LV signal frequencies (in coll. with MICROSCOPE team)

Thank you

State of the art

Previous maximal sensitivities

Last best measurement

TABLE VIII. Estimated mean and 1σ uncertainty of the SME coefficients obtained with a fit combining results from Sec. III,

Table S2. Maximal sensitivities for the matter sector			
Coefficient	Electron	Proton	Neutron
\tilde{b}_{X}	$10^{-31} \mathrm{GeV}$	$10^{-31} \mathrm{GeV}$	$10^{-33} \mathrm{GeV}$
\tilde{b}_{Y}	$10^{-31} \mathrm{GeV}$	$10^{-31} \mathrm{GeV}$	$10^{-33} \mathrm{GeV}$
\tilde{b}_{Z}	$10^{-29} \mathrm{GeV}$	$10^{-28} \mathrm{GeV}$	$10^{-29} \mathrm{GeV}$
\tilde{b}_{T}	$10^{-26} \mathrm{GeV}$	-	$10^{-26} \mathrm{GeV}$
$\tilde{b}_{J}^{*}, \quad(J=X, Y, Z)$	$10^{-22} \mathrm{GeV}$	-	-

from A. Hees, Q. Bailey, C. Guerlin, LLR data analysis from [19] and atom interferometry gravimetry P. Wolf et al., Phys. Rev. D 92, $\xlongequal{\text { experiment [20,21]. }}$

064049 (2015)	SME coefficients	Estimation
	$\bar{s}^{\overline{X X}}-\bar{s}^{Y Y}$	$(9.6 \pm 5.6) \times 10^{-11}$
	$\bar{s}^{Q}=\bar{s}^{X X}+\bar{s}^{Y Y}-2 \bar{s}^{Z Z}$	$(1.6 \pm 0.78) \times 10^{-10}$
	$\bar{s}^{X Y}$	$(6.5 \pm 3.2) \times 10^{-11}$
	$\bar{s}^{\text {XZ }}$	$(2.0 \pm 1.0) \times 10^{-11}$
	$\bar{s}^{Y Z}$	$(4.1 \pm 5.0) \times 10^{-12}$
ssel,	$\bar{s}^{T X}$	$(-7.4 \pm 8.7) \times 10^{-6}$
	$\bar{s}^{T Y}$	$(-0.8 \pm 2.5) \times 10^{-5}$
	$\bar{s}^{T Z}$	$(0.8 \pm 5.8) \times 10^{-5}$
	$\alpha\left(\bar{a}_{\text {eff }}^{e}\right)^{X}+\alpha\left(\bar{a}_{\text {eff }}^{p}\right)^{X}$	$(-7.6 \pm 9.0) \times 10^{-6} \mathrm{GeV} / \mathrm{c}^{2}$
	$\alpha\left(\bar{a}_{\text {eff }}^{e}\right)^{Y}+\alpha\left(\bar{a}_{\text {eff }}^{P}\right)^{Y}$	$(-6.2 \pm 9.5) \times 10^{-5} \mathrm{GeV} / c^{2}$
	$\alpha\left(\bar{a}_{\text {eff }}^{e}\right)^{Z}+\alpha\left(\bar{a}_{\text {eff }}^{P}\right)^{Z}$	$(1.3 \pm 2.2) \times 10^{-4} \mathrm{GeV} / c^{2}$
	$\alpha\left(\bar{a}_{\text {eff }}^{n}\right)^{X}$	$(-5.4 \pm 6.3) \times 10^{-6} \mathrm{GeV} / c^{2}$
		$(4.8 \pm 8.2) \times 10^{-4} \mathrm{GeV} / c^{2}$
	$\left.\underline{\alpha\left(\bar{a}_{\mathrm{eff}}^{n}\right)^{2}}\right)$	$(-1.1 \pm 1.9) \times 10^{-3} \mathrm{GeV} / \mathrm{c}^{2}$

MICROSCOPE

TABLE XI. Sensitivities for satellite-based WEP tests.
Table S5. Maximal sensitivities for the gravity sector

Coefficient	Electron	Proton	Neutron
$\alpha \bar{a}_{T}$	$10^{-11} \mathrm{GeV}$	$10^{-11} \mathrm{GeV}$	$10^{-11} \mathrm{GeV}$
$\alpha \bar{a}_{X}$	$10^{-6} \mathrm{GeV}$	$10^{-6} \mathrm{GeV}$	$10^{-5} \mathrm{GeV}$
$\alpha \bar{a}_{Y}$	$10^{-5} \mathrm{GeV}$	$10^{-5} \mathrm{GeV}$	$10^{-4} \mathrm{GeV}$
$\alpha \bar{a}_{Z}$	$10^{-5} \mathrm{GeV}$	$10^{-5} \mathrm{GeV}$	$10^{-4} \mathrm{GeV}$

Coefficient	MicroSCOPE	GG	STEP
$\alpha\left(\bar{a}_{\text {eff }}^{e+p-n}\right)_{T}-\frac{1}{3} m^{p}\left(\bar{c}^{e+p-n}\right)_{T T}$	\{ $10^{-13} \mathrm{GeV}$ \}	$\left\{10^{-15} \mathrm{GeV}\right\}$	$\left\{10^{-16} \mathrm{GeV}\right\}$
$\alpha\left(\bar{a}_{\text {eff }}^{\text {ef }} \text { en }\right)_{X}$	$\left\{10^{-9} \mathrm{GeV}\right\}$	$\left\{10^{-11} \mathrm{GeV}\right\}$	$\left\{10^{-12} \mathrm{GeV}\right\}$
$\left.\alpha\left(\bar{a}_{\text {eff }}^{\text {eff }} \text { en }\right)^{\text {a }}\right)_{Y+Z}$	$\left\{10^{-9} \mathrm{GeV}\right\}$	$\left\{10^{-11} \mathrm{GeV}\right\}$	$\left\{10^{-12} \mathrm{GeV}\right\}$
	$\left\{10^{-7} \mathrm{GeV}\right\}$	$\left\{10^{-9} \mathrm{GeV}\right\}$	$\left\{10^{-10} \mathrm{GeV}\right\}$
$\alpha\left(\bar{a}_{\text {eff }}^{e+p-n}\right)_{Z}$	\{10 $\left.0^{-7} \mathrm{GeV}\right\}$	$\left\{10^{-9} \mathrm{GeV}\right\}$	$\left\{10^{-10} \mathrm{GeV}\right\}$
$\left(\bar{L}^{n}\right)_{2}$	$\left\{10^{-43}\right\}$	$\left\{10^{-15}\right\}$	$\left\{10^{-16}\right\}$
$\left(\bar{c}^{n}\right)_{(T J)}$	$\left\{10^{-9}\right\}$	$\left\{10^{-11}\right\}$	$\left\{10^{-12}\right\}$

from V. A. Kostelecky and J. D. Tasson, Phys. Rev. D 83, 016013 (2011)

Composition dependence of test bodies

$$
\sum_{w}\left(\frac{N_{1}^{w}}{m_{1}}-\frac{N_{2}^{w}}{m_{2}}\right)\left(\bar{a}_{\mathrm{eff}}^{w}\right)_{\mu}=\frac{N_{1}^{p} N_{2}^{n}-N_{1}^{n} N_{2}^{p}}{m_{1} m_{2}} m^{n}\left(\bar{a}_{\mathrm{eff}}^{e+p-n}\right)_{\mu}
$$

$\longrightarrow C_{\omega_{n}}, S_{\omega_{n}}=f\left(\bar{c}_{\mu \nu}^{e+p-n},\left(\bar{a}_{\mathrm{eff}}^{e+p-n}\right)_{\mu}\right)$
with

$$
\begin{gathered}
\left(\bar{a}_{\mathrm{eff}}^{e+p-n}\right)_{\mu} \approx\left(\bar{a}_{\mathrm{eff}}^{e}\right)_{\mu}+\left(\bar{a}_{\mathrm{eff}}^{p}\right)_{\mu}-\left(\bar{a}_{\mathrm{eff}}^{n}\right)_{\mu} \\
\bar{c}_{\mu \nu}^{e+p-n} \approx \frac{m_{e}}{m_{p}} \bar{c}_{\mu \nu}^{e}+\bar{c}_{\mu \nu}^{p}+\bar{c}_{\mu \nu}^{n}
\end{gathered}
$$

4 independent coefficients

Composition of test bodies

prefactor from $\frac{N_{1}^{w}}{m_{1}}-\frac{N_{2}^{w}}{m_{2}}: \quad \sim$ difference in neutron/nucleons ratios $\times \mathrm{GeV}^{-1}$

SME model for satellite based WEP test

$$
\begin{aligned}
\Delta a_{\mathrm{LV}}^{\hat{x}}= & r \omega_{s}^{2} \sum_{w, n}\left(\frac{N_{1}^{w}}{m_{1}}-\frac{N_{2}^{w}}{m_{2}}\right)\left(P_{n} \sin \left(\omega_{n} T+\alpha_{n}\right)\right. \\
& \left.+Q_{n} \cos \left(\omega_{n} T+\alpha_{n}\right)\right) .
\end{aligned}
$$

with

TABLE IX.	Notation for satellite-based WEP tests.
Quantity	Definition
R_{\oplus}	Mean Earth radius
V_{\oplus}	Mean Earth orbital speed
r^{J}	Earth-satellite separation
ω_{s}	Satellite orbital frequency
ω_{r}	Satellite rotational frequency
ξ_{1}	Inclination of satellite orbit
ξ_{2}	Longitude of satellite-orbit node
θ_{1}	Phase fixing satellite location at $T=0$
θ_{2}	Phase fixing satellite orientation at $T=0$

with orbital and spin frequencies defined around same direction

TABLE X. Amplitudes for satellite-based WEP tests.

Amplitude	Phase
$P_{\omega_{r}}=m^{w} r \omega_{s}\left[\left(\bar{c}^{w}\right)_{(T Y)} \sin \xi_{1}+\left(\bar{c}^{w}\right)_{(T X)} \cos \xi_{1}\right]+\frac{\omega R_{\oplus}^{2} \alpha \cos \xi_{2}}{5 r}\left[\left(\bar{a}_{\mathrm{eff}}^{w}\right)_{X} \cos \xi_{1}+\left(\bar{a}_{\mathrm{eff}}^{w}\right)_{Y} \sin \xi_{1}\right]$	θ_{2}
$Q_{\omega_{r}}=m^{w} r \omega_{s}\left[\left(\bar{c}^{w}\right)_{(T X)} \sin \xi_{1} \cos \xi_{2}-\left(\bar{c}^{w}\right)_{(T Y)} \cos \xi_{1} \cos \xi_{2}-\left(\bar{c}^{w}\right)_{(T Z)} \sin \xi_{2}\right]+\frac{\omega R_{\Phi}^{2} \alpha}{5 r}\left[\left(\bar{a}_{\text {eff }}^{w}\right)_{X} \sin \xi_{1}-\left(\bar{a}_{\text {eff }}^{w}\right)_{Y} \cos \xi_{1}\right]$	θ_{2}
$P_{\omega_{r}+\omega_{s}}=2 m^{w}\left[\cos \xi_{2} \cos 2 \xi_{1}\left(\bar{c}^{w}\right)_{(X Y)}+\sin \xi_{2} \sin \xi_{1}\left(\bar{c}^{w}\right)_{(Y Z)}+\frac{1}{2} \sin 2 \xi_{1} \cos \xi_{2}\left(\left(\bar{c}^{w}\right)_{Y Y}-\left(\bar{c}^{w}\right)_{X X}\right)+\sin \xi_{2} \cos \xi_{1}\left(\bar{c}^{w}\right)_{(X Z)}\right]$	$\theta_{1}+\theta_{2}$
$\begin{aligned} Q_{\omega_{s}+\omega_{r}}= & m^{w}\left[\left(\cos ^{2} \xi_{2} \cos ^{2} \xi_{1}-\sin ^{2} \xi_{1}+\frac{1}{2} \sin ^{2} \xi_{2}\right)\left(\left(\bar{c}^{w}\right)_{X X}-\left(\bar{c}^{w}\right)_{Y Y}\right)+\frac{1}{2} \sin ^{2} \xi_{2}\left(\left(\bar{c}^{w}\right)_{X X}+\left(\bar{c}^{w}\right)_{Y Y}-2\left(\bar{c}^{w}\right)_{Z Z}\right)\right. \\ & \left.-\cos \xi_{1} \sin 2 \xi_{2}\left(\bar{c}^{w}\right)_{(Y Z)}+\sin \xi_{1} \sin 2 \xi_{2}\left(\bar{c}^{w}\right)_{(X Z)}+\sin 2 \xi_{1}\left(1+\cos ^{2} \xi_{2}\right)\left(\bar{c}^{w}\right)_{(X Y)}\right] \end{aligned}$	$\theta_{1}+\theta_{2}$
$\begin{aligned} Q_{\omega_{s}-\omega_{r}}= & m^{w}\left[\left(\cos ^{2} \xi_{1} \sin ^{2} \xi_{2}+\frac{1}{2} \cos ^{2} \xi_{2}+\frac{1}{2}\right)\left(\left(\bar{c}^{w}\right)_{X X}-\left(\bar{c}^{w}\right)_{Y Y}\right)-\frac{1}{2} \sin ^{2} \xi_{2}\left(\left(\bar{c}^{w}\right)_{X X}+\left(\bar{c}^{w}\right)_{Y Y}-2\left(\bar{c}^{w}\right)_{Z Z}\right)\right. \\ & \left.+2\left(\bar{c}^{w}\right)_{Y Y}+\sin 2 \xi_{1}\left(1-\cos ^{2} \xi_{2}\right)\left(\bar{c}^{w}\right)_{(X Y)}-\sin \xi_{1} \sin 2 \dot{\xi}_{2}\left(\bar{c}^{w}\right)_{(X Z)}+\cos \xi_{1} \sin 2 \xi_{2}\left(\bar{c}^{w}\right)_{(Y Z)}\right]-2 \alpha\left(\bar{a}_{\mathrm{eff}}^{w}\right)_{T} \end{aligned}$	$\theta_{1}-\theta_{2}$
$P_{2 \omega_{s}-\omega_{r}}=-m^{w} r \omega_{s}\left[\left(\bar{c}^{w}\right)_{(T X)} \cos \xi_{1}+\left(\bar{c}^{w}\right)_{(T Y)} \sin \xi_{1}\right]-\frac{3 \omega R_{\oplus}^{2} \alpha \cos \xi_{2}}{5 r}\left[\left(\bar{a}_{\mathrm{eff}}^{w}\right)_{X} \cos \xi_{1}+\left(\bar{a}_{\mathrm{eff}}^{w}\right)_{Y} \sin \xi_{1}\right]$	$2 \theta_{1}-\theta_{2}$
$Q_{2 \omega_{s}-\omega_{r}}=m^{w} r \omega_{s}\left[\left(\bar{c}^{w}\right)_{(T Y)} \cos \xi_{1} \cos \xi_{2}-\left(\bar{c}^{w}\right)_{(T X)} \sin \xi_{1} \cos \xi_{2}+\left(\bar{c}^{w}\right)_{(T Z)} \sin \xi_{2}\right]-\frac{3 \omega R_{\oplus}^{2} \alpha}{5 r}\left[\left(\bar{a}_{\text {eff }}^{w}\right)_{X} \sin \xi_{1}-\left(\bar{a}_{\text {eff }}^{w}\right)_{Y} \cos \xi_{1}\right]$	$2 \theta_{1}-\theta_{2}$
$\begin{aligned} P_{\Omega+\omega_{s}+\omega_{r}}= & m^{w} V_{\oplus}\left[\left(\cos ^{2} \xi_{1}-\sin ^{2} \xi_{1} \cos ^{2} \xi_{2}-\cos \eta \cos \xi_{2} \cos 2 \xi_{1}-\sin \eta \sin \xi_{2} \cos \xi_{1}\right)\left(\bar{c}^{w}\right)_{(T X)}\right. \\ & \left.+\sin \xi_{1} \sin \xi_{2}\left(\cos \xi_{2}-\cos \eta\right)\left(\bar{c}^{w}\right)_{(T Z)}+\left(\cos \xi_{1}+\cos \xi_{1} \cos ^{2} \xi_{2}-\sin \eta \sin \xi_{2}-2 \cos \eta \cos \xi_{1} \cos \xi_{2}\right) \sin \xi_{1}\left(\bar{c}^{w}\right)_{(T Y)}\right] \end{aligned}$	$\theta_{1}+\theta_{2}$
$\begin{aligned} Q_{\Omega+\omega_{s}+\omega_{r}}= & m^{w} V_{\oplus}\left[\left(2 \cos \xi_{1} \cos \xi_{2}-\sin \eta \sin \xi_{2} \cos \xi_{2}-\cos \eta \cos \xi_{1}\left(1+\cos ^{2} \xi_{2}\right)\right) \sin \xi_{1}\left(\bar{c}^{w}\right)_{(T X)}\right. \\ & -\left(\cos 2 \xi_{1} \cos \xi_{2}-\sin \eta \cos \xi_{1} \sin \xi_{2} \cos \xi_{2}+\cos \eta\left(1-\cos ^{2} \xi_{1} \sin ^{2} \xi_{2}\right)\right)\left(\bar{c}^{w}\right)_{(T Y)} \\ & \left.-\left(\cos \xi_{1}-\sin \eta \sin \xi_{2}-\cos \eta \cos \xi_{1}\right) \sin \xi_{2}\left(\bar{c}^{w}\right)_{(T Z)}\right] \end{aligned}$	$\theta_{1}+\theta_{2}$
$P_{\Omega+\omega_{s}-\omega_{r}}=m^{w} V_{\oplus}\left[\left(1-\sin ^{2} \xi_{1} \sin ^{2} \xi_{2}\right)\left(\bar{c}^{w}\right)_{(T X)}+\frac{1}{2} \sin 2 \xi_{1} \sin ^{2} \xi_{2}\left(\bar{c}^{w}\right)_{(T Y)}-\frac{1}{2} \sin \xi_{1} \sin 2 \xi_{2}\left(\bar{c}^{w}\right)_{(T Z)}\right]-\alpha V_{\oplus}\left(\bar{a}_{\mathrm{eff}}^{w}\right)_{X}$	$\theta_{1}-\theta_{2}$
$\begin{aligned} Q_{\Omega+\omega_{s}-\omega_{r}}= & -m^{w} V_{\oplus}\left[\frac{1}{2}\left(\cos \eta \sin 2 \xi_{1} \sin ^{2} \xi_{2}-\sin \eta \sin \xi_{1} \sin 2 \xi_{2}\right)\left(\bar{c}^{w}\right)_{(T X)}+\left(\frac{1}{2} \sin \eta \cos \xi_{1} \sin 2 \xi_{2}\right.\right. \\ & \left.\left.+\left(1-\sin ^{2} \xi_{2} \cos ^{2} \xi_{1}\right) \cos \eta\right)\left(\bar{c}^{w}\right)_{(T Y)}+\left(\sin \eta \sin ^{2} \xi_{2}+\frac{1}{2} \cos \eta \cos \xi_{1} \sin 2 \xi_{2}\right)\left(\bar{c}^{w}\right)_{(T Z)}\right] \\ & +\alpha V_{\oplus}\left[\left(\bar{a}_{\mathrm{eff}}^{w}\right)_{Z} \sin \eta+\left(\bar{a}_{\mathrm{eff}}^{w}\right)_{Y} \cos \eta\right] \end{aligned}$	$\theta_{1}-\theta_{2}$
$P_{\Omega-\omega_{s}+\omega_{r}}=m^{w} V_{\oplus}\left[\left(1-\sin ^{2} \xi_{1} \sin ^{2} \xi_{2}\right)\left(\bar{c}^{w}\right)_{(T X)}+\frac{1}{2} \sin 2 \xi_{1} \sin ^{2} \xi_{2}\left(\bar{c}^{w}\right)_{(T Y)}-\frac{1}{2} \sin \xi_{1} \sin 2 \xi_{2}\left(\bar{c}^{w}\right)_{(T Z)}\right]-\alpha V_{\oplus}\left(\bar{a}_{\text {eff }}^{w}\right)_{X}$	$-\theta_{1}+\theta_{2}$
$\begin{aligned} Q_{\Omega-\omega_{s}+\omega_{r}}= & m^{w} V_{\oplus}\left[\frac{1}{2}\left(\sin \eta \sin \xi_{1} \sin 2 \xi_{2}-\cos \eta \sin 2 \xi_{1} \sin ^{2} \xi_{2}\right)\left(\bar{c}^{w}\right)_{(T X)}-\left(\frac{1}{2} \sin \eta \cos \xi_{1} \sin 2 \xi_{2}\right.\right. \\ & \left.\left.+\cos \eta\left(1-\cos ^{2} \xi_{1} \sin ^{2} \xi_{2}\right)\right)\left(\bar{c}^{w}\right)_{(T Y)}-\left(\sin \eta \sin ^{2} \xi_{2}+\frac{1}{2} \cos \eta \cos \xi_{1} \sin 2 \xi_{2}\right)\left(\bar{c}^{w}\right)_{(T Z)}\right] \\ & +\alpha V_{\oplus}\left[\left(\bar{a}_{\mathrm{eff}}^{w}\right)_{Z} \sin \eta+\left(\bar{a}_{\mathrm{eff}}^{w}\right)_{Y} \cos \eta\right] \end{aligned}$	$-\theta_{1}+\theta_{2}$
$\begin{aligned} P_{\Omega-\omega_{s}-\omega_{r}}= & m^{w} V_{\oplus}\left[\left(\cos ^{2} \xi_{1}-\sin ^{2} \xi_{1} \cos ^{2} \xi_{2}+\sin \eta \cos \xi_{1} \sin \xi_{2}+\cos \eta \cos 2 \xi_{1} \cos \xi_{2}\right)\left(\bar{c}^{w}\right)_{(T X)}\right. \\ & \left.+\left(\frac{1}{2} \sin 2 \xi_{1}\left(1+\cos ^{2} \xi_{2}\right)+\sin \eta \sin \xi_{1} \sin \xi_{2}+\cos \eta \sin 2 \xi_{1} \cos \xi_{2}\right)\left(\bar{c}^{w}\right)_{(T Y)}+\left(\frac{1}{2} \sin 2 \xi_{2}+\cos \eta \sin \xi_{2}\right) \sin \xi_{1}\left(\bar{c}^{w}\right)_{(T Z)}\right] \end{aligned}$	$-\theta_{1}-\theta_{2}$
$\begin{aligned} Q_{\Omega-\omega_{s}-\omega_{r}}= & m^{w} V_{\oplus}\left[-\left(\sin 2 \xi_{1} \cos \xi_{2}+\frac{1}{2} \sin \eta \sin \xi_{1} \sin 2 \xi_{2}+\frac{1}{2} \cos \eta \sin \xi_{1}\left(1+\cos ^{2} \xi_{2}\right)\right)\left(\bar{c}^{w}\right)_{(T X)}\right. \\ & +\left(\cos 2 \xi_{1} \cos \xi_{2}+\frac{1}{2} \sin \eta \cos \xi_{1} \sin \xi_{2}-\cos \eta\left(\sin ^{2} \xi_{1}-\cos ^{2} \xi_{1} \cos ^{2} \xi_{2}\right)\right)\left(\bar{c}^{w}\right)_{(T Y)} \\ & \left.+\left(\cos \xi_{1} \sin \xi_{2}+\sin \eta \sin ^{2} \xi_{2}+\frac{1}{2} \cos \eta \cos \xi_{1} \sin 2 \xi_{2}\right)\left(\bar{c}^{w}\right)_{(T Z)}\right] \end{aligned}$	$-\theta_{1}-\theta_{2}$

from V. A. Kostelecky and J. D. Tasson, Phys. Rev. D 83, 016013 (2011)

Constraints on Lorentz violation in the SME framework

- atom-interferometer tests (Mueller et al)
- lunar laser ranging (Battat et al)
- pulsar-timing observations (Shao)
- short-range gravity tests (Long et al)
- trapped particle tests (Dehmelt, Gabrielse, ...)
- spin-polarized matter tests (EotWash)
- clock-comparison tests (Gibble, Hunter, Romalis, Hedges, Walsworth, Wolf, ...)
- tests with resonant cavities (Lipa, Mueller, Peters, Schiller, Tobar, Wolf, Bize, ...)
- neutrino oscillations (LSND, Minos, Super K, ...)
- muon tests (Hughes, BNL g-2)
- meson oscillations (BABAR, BELLE, DELPHI, FOCUS, KTeV, OPAL, ...)
- astroparticle physics (Altschul, ...)
- cosmological birefringence (Mewes, ...)
- ...

Collected results-> Data Tables: Rev. Mod. Phys. 2011, arxiv: 0801.0287v8 (2015 edition)

PPN and SME

PPN vs. SME

framework	PPN	SME
parameterizes deviations from:	General Relativity (including some Lorentz violation)	exact Lorentz invariance (including some corrections to GR)
expansion about:	GR metric	GR + standard model lagrangian
GR corrections?	Yes	Yes, different ones!
matter sector /standard model corrections?	No	Yes
Lorentz invariant corrections?	Yes	Not of primary interest

Origin of Lorentz violating tensors

background vectors and tensors are cute, but where could the come from?

- explicate Lorentz violation
- the universe just looks that way
- not in general consistent with Riemann geometry ${ }^{1}$

- spontaneous Lorentz violation
- a vector or tensor field gets a vacuum-expectation value
- nonzero VEV observed for a scalar particle, the Higgs (no Lorentz violation)
- VEV for vector or tensor would be my red arrows \bar{a}_{μ}
- consistent with Riemann geometry

SME equations of motion in «lab» frame

$$
\begin{equation*}
F_{\hat{j}}=m_{\hat{j} \hat{k}} \ddot{x}_{\hat{k}} . \tag{132}
\end{equation*}
$$

At this perturbative order, the inertial and gravitational forces acting on the test particle are given by

$$
\begin{align*}
F_{\hat{x}}= & m^{\mathrm{T}} g \bar{s}_{\hat{z}} \hat{x} \\
F_{\hat{y}}= & m^{\mathrm{T}} g \bar{s}_{\hat{z}} \hat{y} \\
F_{\hat{z}}= & -m^{\mathrm{T}} g\left[1+\frac{2 \alpha}{m^{\mathrm{T}}}\left(\bar{a}_{\mathrm{eff}}^{\mathrm{T}}\right)_{\hat{t}}+\frac{2 \alpha}{m^{\mathrm{S}}}\left(\bar{a}_{\mathrm{eff}}^{\mathrm{S}}\right)_{\hat{t}}+\left(\bar{c}^{\mathrm{T}}\right)_{\hat{\imath} \hat{\imath}}\right. \\
& \left.+\left(\bar{c}^{\mathrm{S}}\right)_{\hat{t} \hat{t}}+\frac{3}{2} \bar{s}_{\hat{\imath} \hat{t}}+\frac{1}{2} \bar{s}_{\hat{z} \hat{\imath}}\right], \tag{133}
\end{align*}
$$

while

$$
\begin{equation*}
m_{\hat{j} \hat{k}}=m^{\mathrm{T}}\left(1+\left(\bar{c}^{\mathrm{T}}\right)_{\hat{t} \hat{t}}\right) \delta_{\hat{j} \hat{k}}+2 m^{\mathrm{T}}\left(\bar{c}^{\mathrm{T}}\right)_{(\hat{j} \hat{k} \hat{k}} \tag{134}
\end{equation*}
$$

[^0]
Frameworks for Lorentz violation

- Key Idea: Rotate or boost your experiment - physics changes!
- Approaches:

1) modified Lorentz transformation

- vacuum empty
- deformed lightcone
- "simple", kinematical, phenomenological
- e.g., RMS framework, DSR, ...

2) "background" tensor fields $\left(a_{\mu}, b_{\mu}, c_{\mu v}, k_{\mu v k \Lambda}, \ldots\right)$

- vacuum contains background fields
- dynamical, can incorporate QM, etc.
- complicated, many possible effects
- e.g., Standard-Model Extension
- contains test frameworks 1) as limiting cases

Tidal acceleration

$$
\begin{aligned}
\Delta \mathrm{a}_{\text {tidal }}^{\hat{x}}= & -\left(\frac{3}{2} \omega_{s}^{2} \cos \left(2 \omega_{r} T-2 \omega_{s} T+\theta_{2}-\theta_{1}\right)\right. \\
& \left.+\omega_{r}^{2}+\frac{1}{2} \omega_{s}^{2}\right) \Delta \hat{x} .
\end{aligned}
$$

Orders of magnitude for SME coefficients

Sizes of Lorentz-violating effects

- Benchmark estimate:
coefficient size ~ mass of particle²/Planck mass
e.g., neutron $a_{\mu}^{n} \sim m_{n}{ }^{2} / 10^{19} \mathrm{GeV} \approx 10^{-19} \mathrm{GeV}$
- However, with gravity couplings coefficients could be quite large ("countershading")
e.g.. electron $a_{Z}^{e} \sim m_{e}=.5 \mathrm{MeV}$ (current sensitivity ~. 01 MeV)

$$
\bar{s}^{\mu \nu} \sim 10^{-10}-10^{-35}
$$

$\left(\bar{k}_{\text {eff }}\right)_{j k l m}$ could be as big as $10^{-9} \mathrm{~m}^{2} \sim 10^{21} \mathrm{GeV}^{-2}$

WEP violation through matter dependent Lorentz violation

SME matter gravity couplings

SME matter-gravity couplings

- Start with lagrangian for fermions in curved spacetime -> Classical action for spinless matter:

$$
S_{M}=\int d \lambda\left(-m \sqrt{-\left(g_{\mu \nu}+2 c_{\mu \nu}\right) u^{\mu} u^{\nu}}-a_{\mu} u^{\mu}\right)
$$

Species-dependent coefficients for Lorentz violation Note: a_{μ} is unobservable in flat spacetime

- For basic matter (e, p, n) there are 36 coefficients
- Features:
- Flavor-dependent anisotropic gravitational fields
- Test-particle dependent motion in a gravitational field (WEP violation!)
- Sidereal time variation
- Can be probed in WEP tests, solar-system tests, ...

[^0]: V. A. Kostelecky and J. D. Tasson, Phys. Rev. D 83, 016013 (2011)

